首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of a study of low-temperature heat capacity of the Mn20FexNi80?x, Fe50Ni50?xMnx, Fe65Ni35?xCrx, Cr10FexNi0?xquasi-binary alloys are compared with the form of relevant magnetic phase diagrams. It is shown that the anomalously high values of a temperature-linear contribution to heat capacity in alloys, lying in the vicinity of a critical concentration of the change of the type of magnetic order, are determined by the presence of “cluster spin glass”.  相似文献   

2.
Temperature and magnetic field dependences of the thermal expansion between 4 and 300 K and in fields up to 6 T were made on Fe80-xNixCr20 for 14⩽x⩽49 at%. This concentration range covered the regions in which the samples were antiferromagnetic, paramagnetic and ferromagnetic as well as spin glass and reentrant spin glass at low temperatures. We develop a method of determining the lattice contribution to the thermal expansion for such systems showing mixed magnetic behavior and analyze the present data accordingly. We find in ferromagnetic samples large magnetic contributions to the thermal expansion even at temperatures much higher than the Curie temperature. The field dependence of the lenght change shows behavior which is characteristic of the magnetic state of the system.  相似文献   

3.
We report low field dc magnetization measurements on (FexMn1?x)75P16B6Al3 alloys at 4 ? T ? 300 K. Reentrant magnetic behavior is observed for x = 0.65, 0.7 and 0.8. By comparing field cooled and zero-field cooled states at low T we separate out the reversible and irreversible contributions to the magnetization M and identify the (field-dependent) temperature for the onset of irreversibility. It is shown that the reversible part of the magnetization can be described by the usual scaling laws for critical behavior in magnetic systems not only at the transition from the paramagnetic to the ferromagnetic phase but also when the latter transforms to a spin glass. We identify the irreversible part of M with a spin glass order parameter.  相似文献   

4.
In antiperovskite intermetallics ZnCNi3?x Mn x , the negative slope coefficient (NSC) dρ/dT of resistivity–temperature curves is observed when x=1.15,1.25,1.4,1.5. The sample with x=1.25 shows a semiconductor-like behavior in the whole temperature range of 15–290 K. By study of the magnetization, magnetoresistance, and low-temperature X-ray diffraction, it is found that Mn dopant significantly affects the physical properties of ZnCNi3?x Mn x by changing both the carrier density and the magnetism. The origin of the NSC dρ/dT can be ascribed to the change of hole-like carrier density, which is adjusted by Mn content. The existence of hole-like carriers can be understood rationally by the two-band model. The change of sign of magnetoresistance from positive to negative has been observed in ZnCNi3?x Mn x with the change of Mn content, which could be ascribed to the competition between the contribution from field-induced suppression of the thermally excited ferromagnetic spin fluctuations and the Lorentz contribution. When Mn content is low, the Lorentz contribution dominates the sign of magnetoresistance. On the other hand, when Mn content is high, the contribution from field-induced suppression of the thermally excited ferromagnetic spin fluctuations dominates the sign of magnetoresistance.  相似文献   

5.
The Hall resistivity and magnetization have been investigated in the ferromagnetic state of the bilayered manganite La2−2xSr1+2xMn2O7 (x=0.36). The Hall resistivity shows an increase in both the ordinary and anomalous Hall coefficients at low temperatures below 50 K, a region in which experimental evidence for the spin glass state has been found in a low magnetic field of 1 mT. The origin of the anomalous behavior of the Hall resistivity relevant to magnetic states may lie in the intrinsic microscopic inhomogeneity in a quasi-two-dimensional electron system.  相似文献   

6.
The T-x magnetic phase diagram of Mn1 ? x Fe x Si solid solutions is probed by magnetic susceptibility, magnetization and resistivity measurements. The boundary limiting phase with short-range magnetic order (analogue of the chiral liquid) is defined experimentally and described analytically within simple model accounting both classical and quantum magnetic fluctuations together with effects of disorder. It is shown that Mn1 ? x Fe x Si system undergoes a sequence of two quantum phase transitions. The first “underlying” quantum critical (QC) point x* ~ 0.11 corresponds to disappearance of the long-range magnetic order. This quantum phase transition is masked by short-range order phase, however, it manifests itself at finite temperatures by crossover between classical and quantum fluctuations, which is predicted and observed in the paramagnetic phase. The second QC point x c ~ 0.24 may have topological nature and corresponds to percolation threshold in the magnetic subsystem of Mn1 ? x Fe x Si. Above x c the short-range ordered phase is suppressed and magnetic subsystem becomes separated into spin clusters resulting in observation of the disorder-driven QC Griffiths-type phase characterized by an anomalously divergent magnetic susceptibility χ ~ 1/T ξ with the exponents ξ ~ 0.5–0.6.  相似文献   

7.
The influence of the substitution of manganese by boron on the crystal structure and magnetic properties of Ni2Mn1−xBxGa Heusler alloys with 0?x?0.5 has been investigated using X-ray diffraction, thermal expansion, resistivity, and magnetization measurements. The samples with concentrations x<0.25 were found to be of single phase and belonged to the cubic L21 crystal structure at room temperature. Crystal cell parameters of the alloys decreased from 5.830 to 5.825 Å with increasing boron concentration (x) from 0 to 0.25. The alloys were ferromagnetically ordered at 5 K and the saturation magnetization decreased with increasing boron concentration. The ferromagnetic ordering and structural transition temperatures for 0?x?0.3 have been observed and the phase (xT) diagram of the Ni2Mn1−xBxGa system was constructed. The phase (xT) diagram indicates that the ground state of Ni2Mn1−xBxGa alloys belongs to ferromagnetic martensitic, premartensitic, and austenitic phases in x?0.12, 0.12<x?0.18, and 0.18<x?0.3, respectively. The relative influence of cell parameters and electron concentrations on the phase diagram is discussed.  相似文献   

8.
The polycrystalline samples La0.67Ca0.33Mn(1?x)Fe x O3 (x?=?0.00,?0.01,?0.03, and 0.1) have been grown in single phase by solid state route. The analysis of the reaction has been done by thermogravimetry and differential thermal analysis measurements. DC electrical resistivity measurements have been carried out down to 15?K. The samples with x?=?0.00, 0.01, and 0.03 exhibit metal–insulator (MI) transition at temperatures 221.5?K, 217?K, and 215?K respectively, whereas the sample with x?=?0.1 is insulating in nature for entire temperature range. Interestingly, the electric transport properties of these samples are not consistent with their magnetic phase transitions and the samples show MI transition at a temperature, T MI, which is significantly lower than the paramagnetic to ferromagnetic transition temperature (T c). The resistivity data below T MI has been analyzed using the empirical relation ρ?=?ρ0?+?ρ1 T n and the data above this temperature has been analyzed using two existing models, Mott's variable range hopping model and spin polaronic conduction model.  相似文献   

9.
La0.7Sr0.3Mn1−xCoxO3 (x=0, 0.05, 0.1) nanoparticles, prepared by sol-gel method, were studied by means of X-ray diffraction, transmission electron microscopy, resistivity, magnetoresistance, thermal expansion and magnetostriction measurements. Results show that partial substitution of Mn by Co leads to a reduction in lattice parameters, enhancement of resistivity and room temperature magnetoresistance MR, decrease of metal-insulator transition temperature TMI and TC, an increase in thermal expansion coefficient, volume magnetostriction and anisotropic magnetostriction. The latter increases about one order of magnitude with 10% Co substitution. In comparison with Mn ions, the Co ions possess higher anisotropy energy, larger magnetostriction effect, smaller ionic size and spin state transitions with increase in temperature and magnetic field; this suggests that Co substitution leads to double-exchange interaction weakening, resulting in suppression of ferromagnetic long-range order and metallic state and increase of magnetic anisotropy. Furthermore, our samples have a relatively lower TMI and TC, higher resistivity and MR, compared with the reported values for similar compounds with larger particle sizes. This is attributed to the nanometric grain size and spin-polarized tunneling between neighboring grains.  相似文献   

10.
A study is reported on the electrical and magnetic characteristics of the FexV1?x S solid-solution system with x≤0.5. A maximum in the temperature dependence of resistivity ρ(T) characteristic of the Kondo effect has been observed for small x(x<0.01). For x>0.1, long-range magnetic order sets in in the system with T K ≈ 100 K. Near x=0.05, the Fe2+ impurity behavior crosses over to a magnetically ordered phase. The electronic properties of FexV1?x S are typical of those of strongly correlated electronic systems. Both the electrical and magnetic data imply that carrier delocalization is the strongest at x=0.4.  相似文献   

11.
The magnetic properties of Ho2Fe17???xMnx compounds (x = 0–2) of ferromagnetic ordering temperatures up to TC ~344 K have been investigated by DC magnetization and Mössbauer effect measurements. The nature of the magnetic phase transitions and the critical behaviour around TC has been investigated by analysis of the magnetisation data and the critical exponents β, γ and δ determined. The critical exponents are found to be similar to the theoretical values of the mean-field model for which β?=?0.5 and γ?=?1.0, indicating the existence of a long-range ferromagnetic interactions. The isothermal entropy changes ΔS around TC have been determined as a function of temperature in different magnetic fields.  相似文献   

12.
Electrical resistivity measurements have been performed on the system Mn5?x,FexSi3 for the compounds x = 0,1,2,3,4 and 5 from 4.2 K to above room temperature. From the shape of the ρ(T) curves it can be inferred that the transition from antiferromagnetic to ferromagnetic ordering occurs in the concentration range 3 ? x ? 4; for Fe5Si3 and MnFe4Si3 the ρ(T) curves are characterized by a break in their slope, whereas for x = 1,2 and 3 a large minimum appears. Mn5Si3 exhibits two successive minima at 74 and 105 K. Magnetic susceptibility measurements for x = 1, 2 and 3 give confirmation of the Néel temperature for x = 1 and 2, whereas for x = 3 the behaviour is more complex.  相似文献   

13.
Fe50Mn15-xCoxNi35(x=0,1,3,5,7)alloys were prepared by arc melting under purified argon atmosphere.The ingots were homogenized at 930°C for 90h followed by water quenching.The crystal structure,magnetic properties and magnetocaloric effects of the alloys were studied by X-ray diffraction(XRD)and MPMS-7-type SQUID.The results show that all samples still maintained a single-(Fe,Ni)-type phase structure.With the increase of the content of Co,the Curie temperatures of these alloys increased and exhibited a second-order magnetic transition from ferromagnetic(FM)to paramagnetic(PM)state near Curie temperature.The maximum magnetic entropy change and the relative cooling power of Fe50Mn10Co5Ni35alloy was 2.55 J/kg·K and 181 J/kg,respectively,for an external field change of 5T.Compared with rare earth metal Gd,Fe50Mn15-xCoxNi35 series of alloys have obvious advantage in resource price;their Curie temperatures can be tuned to near room temperature,maintain a relatively large magnetic entropy change at the same time and they are a type of potential magnetic refrigeration materials near room temperature.  相似文献   

14.
The small-angle neutron scattering energy spectra of the Zn0.55Mn0.45Fe2O4 ferrite are analyzed at different temperatures (both below and above T C ? 390 K) and scattering angles. The thermal expansion coefficient α(T) is measured in the temperature range 80–600 K. It is revealed that inelastic neutron scattering is governed not only by spin waves of the Holstein-Primakoff type but also by the substantial contribution of additional long-wavelength magnetic excitations. The physical nature of these low-energy magnetic excitations is discussed.  相似文献   

15.
The structural, electrical, and magnetic properties, as well as the magnetoresistance of polycrystalline MexMn1?x S (Me=Fe and Cr) sulfides were investigated in longitudinal magnetic fields of up to 50 kOe over the temperature range 4.2–300 K. The ferromagnetic compound FexMn1?x S (x=0.29) exhibits the giant magnetoresistance (GMR) effect with magnitude δH=?450% in a field of 30 kOe at 50 K. Antiferromagnetic CrxMn1?x S (x=0.5) sulfide undergoes a transition to the GMR state δH~?25% in a field of 30 kOe at 4.2 K) in the region of antiferromagnet-ferromagnet transition (T c ~66 K). A mechanism of the GMR in these compounds is discussed.  相似文献   

16.
The single crystals of La0.7Ba0.3(Mn1−xFex)O3 (x⩽0.28) and La0.7Ba0.3(Mn1−xAlx)O3 (x⩽0.15) compositions were grown using flux method and characterized by X-ray, electrical and magnetization measurements. The Fe-doping above x=0.2 destroys a long range ferromagnetic order thus leading to a spin glass state. It is found that insulating spin glasses exhibit a large magnetoresistance in the paramagnetic region which is comparable to that for ferromagnetic crystals showing metal–insulator transition close to TC. The magnetic behavior of La0.7Ba0.3(Mn1−xMex)O3 (Me=Fe, Cr, Al) ceramics is in agreement with superexchange magnetic interactions via oxygen.  相似文献   

17.
Samples of nominal composition Fe0.9?x Mn0.1Al x (0.1 ≤x≤0.5) were prepared both by mechanical alloying and arc-melting. In order to elucidate the effect of the synthesis method upon the magnetic properties of this system, we have carried out a comparative study involving the use of different experimental techniques (Mössbauer, X-ray diffraction, vibrating sample magnetometry and magnetic susceptibility). Results revealed that independently of the employed method and milling time, the samples exhibit ferromagnetism below ~34 at.% Al. Above this concentration, the preparation method became a determinant factor upon the magnetic properties of the system. The differences are attributed, in the case of the mechanically alloyed samples, to Fe contamination arising from jars material. The results of our study are summarized in a magnetic phase diagram including ferromagnetic, paramagnetic, pure spin glass and reentrant spin glass regions.  相似文献   

18.
19.
Bi(Fe1 − xMnx)O3 ceramics (x up to 0.3) were prepared by rapid sintering. Weak ferromagnetism with two magnetic anomalies at low temperatures was observed for Bi(Fe0.95Mn0.05)O3 and Bi(Fe0.9Mn0.1)O3. From temperature-dependent magnetic relaxation measurements, the anomalies at 20 K and 100 K are related to the freezing of cluster spin glass.  相似文献   

20.
Magnetic susceptibility and electrical resistivity measurements were performed (Pd100?xCox)80P20 alloys where 15 < x < 50. The magnetic properties show that these alloys undergo a ferromagnetic transition between 272 and 399 K as the cobalt concentration increases from 15 to 50 atomic %. Below 20 atomic % Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range under an applied field of 6.0 kOe. The electrical resistivity of these alloys has been measured from 4.2 K up to the vinicity of the melting point (900 K). The electrical resistivity data could be interpreted by the coexistence fo a Kondo-like minimum and ferromagnetism. The minimum becomes less important as the transition metal concentration increases. The coefficients of In T and T2 become smaller and concentration dependent. The spin ordering in such alloys can be simulated as either the ordering due to an applied “external field” or as an increase in “internal fields”. These are due to an increase in transition metal concentration. The negative magnetoresistivity is a strong indication of the existence of localized moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号