首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ferromagnetic shape memory alloys, which undergo the martensitic transformation, are famous multifunctional materials. They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure. Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance. In this paper, the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni-Mn-based alloys are reviewed based on our recent research results.  相似文献   

2.
陈娜  张盈祺  姚可夫 《物理学报》2017,66(17):176113-176113
磁性半导体兼具磁性和半导体特性,通过操控电子自旋,有望实现接近完全的电子极化,提供一种全新的导电方式和器件概念.目前磁性半导体的研究对象主要为稀磁半导体,采用在非磁性半导体中添加过渡族磁性元素使半导体获得内禀磁性的方法进行制备.但大部分稀磁半导体仅具有低温磁性,成为限制其在室温可操控电子器件中应用的瓶颈.针对这一关键科学问题,本文提出与传统稀磁半导体制备方法相反的合成思路,在磁性非晶合金中引入非金属元素诱发金属-半导体转变,使磁性非晶获得半导体电性,研制出具有新奇磁、光、电耦合特性的非晶态浓磁半导体,揭示其载流子调制磁性的内禀机理,发展出可在室温下工作的p-n结及电控磁器件.  相似文献   

3.
Soft X-ray resonant magnetic scattering (SXRMS) has been used to investigate the microscopic magnetization reversal behavior of complex magnetic systems. SXRMS is a unique technique, providing chemical, spatial and magnetic sensitivity, which is not affected by external magnetic fields. The study of two selected thin magnetic heterostructures is presented, amorphous rare-earth transition metal alloys and perpendicular exchange coupled antiferromagnetic/ferromagnetic films. In the first system, the internal structure of magnetic stripe domains on nanometer length scales is obtained by measuring bi-dimensional (2D) scattering images. In the second system, the element specificity is exploited to identify the role of the uncompensated spins in the antiferromagnetic layer on the exchange coupling phenomena. Future trends are also discussed.  相似文献   

4.
La2/3Sr1/3MnO3?δ thin films were deposited by laser ablation on MgO substrates under low oxygen pressure cool down. Their structural and magnetic properties are presented. The magnetic and electrical resistivity measurements indicate a reduction of the Curie and the metal–insulator transition temperatures due to the formation of magnetic inhomogeneneous films, where clusters of a metallic phase are mixed in a magnetically disordered insulating matrix. By a low-angle X-ray reflectivity study we show that the thin films are chemically inhomogeneous with an oxygen deficiency in bulk of the film when compared with the film/air interfacial region.  相似文献   

5.
Summary Hard magnetic materials find ever-increasing uses in modern technology. Their importance is mainly in the domain of permanent magnets, but a variety of other applications is being offered to this class of materials, especially for what regards the areas of information storage, telecommunications and special electronic devices. These developments are connected to the emphasis that is more and more given to thin films having high magnetic anisotropy. The recernt advancement in the field of hard magnetic materials is among the best examples where technology depends to a great extent upon the continuous progress in the scientific knowledge. The research activity is characterized by the introduction of new classes of materials and continuous improvements in the preparation techniques both for what regards industrial processing and method for obtaining high quality materials in form of crystals, films or amorphous specimens. In this respect a special place must be reserved to rare earth transition metal compounds, a class of materals that attracted enormeous attention after the discovery by Hoffer and Strnat in 1966 of the large uniaxial magnetocrystalline anisotropy of the compound YCo5. Beside the so called 1∶5 phase, other compositions of technical importance are the 2∶17 and the recently discovered Nd2Fe14B, which is a real new ternary phase having tetragonal crystal structure. Great efforts have been done to gain a better understanding of the magnetic anisotropy and its relationship to the coercivity is of leading importance for a further development in this important area of magnetism.  相似文献   

6.
The paper reviews selected results of the extended experimental investigations of magnetic properties, time–temperature stability and workability of the soft magnetic amorphous alloys controlled by structural magnetic relaxation. Complex approach to the magnetic relaxations in multicomponent amorphous alloys is presented. The transition from magnetic after-effect to a new MAE spectrometry is illustrated on ternary amorphous CoSiB alloy.  相似文献   

7.
姚可夫  施凌翔  陈双琴  邵洋  陈娜  贾蓟丽 《物理学报》2018,67(1):16101-016101
非晶合金通常是将熔融的金属快速冷却、通过抑制结晶而获得的原子呈长程无序排列的金属材料.由于具有这种特殊结构,铁基软磁非晶合金具有各向同性特征、很小的结构关联尺寸和磁各向异性常数,因而具有很小的矫顽力H_c,但可和晶态材料一样具有高的饱和磁感强度B_s.优异的软磁性能促进了铁基软磁非晶合金的应用研究.目前,铁基软磁非晶/纳米晶合金带材已实现大规模工业化生产和应用,成为重要的高性能软磁材料.本文回顾了软磁非晶合金的发现和发展历程,结合成分、结构、工艺对铁基非晶/纳米晶合金软磁性能的影响,介绍了相关基础研究成果和工艺技术进步对铁基软磁非晶/纳米晶合金研发和工业化应用的重要贡献.并根据结构、性能特征将铁基软磁非晶合金研发与应用分为三个阶段,指出了目前铁基软磁非晶合金研发与应用中面临的挑战和发展方向.  相似文献   

8.
The relation between structural and magnetic properties of Co-Ni-Cr-Al-Y-N thin films deposited by reactive r.f. magnetron sputtering was investigated. A marked change in the magnetic behaviour of the films with the different nitrogen partial pressure in the Ar/N2 deposition atmosphere was observed and qualitatively explained in correlation with the phase composition. The nanocrystalline metal solid-solution obtained at low N2 content and the nanocrystalline nitride/amorphous composite obtained at high N2 content are not magnetic, whereas the amorphous phase produced for intermediate N2 pressures behaves like a ferromagnetic semi-permanent material. The results demonstrate the possibility of modulating the magnetic properties of r.f. magnetron sputtered Co-Ni-Cr-Al-Y-N thin films, thus opening a new route for magnetic multilayer deposition. PACS 68.55.-a; 75.70.Ak; 75.75.+a; 85.70.-w  相似文献   

9.
万虹  戴道生  方瑞宜  刘尊孝  兰健 《物理学报》1989,38(10):1551-1558
本文通过对非晶态轻稀土Pr,Nd和过渡族金属Fe,Co,Ni薄膜合金的低温磁性研究,分别得到了(Pr,Nd)x-(Fe,Co,Ni)1-x合金中Pr,Nd和Fe,Co,Ni金属磁矩随成份x的变化,并且通过对磁矩的研究得到Pr离子的4f电子可能有退局域化的结论。 关键词:  相似文献   

10.
The microstructure, morphology, and magnetic properties of FeAlN films deposited by reactive rf magnetron sputtering with subsequent treatment by three techniques, namely, in situ, ex situ (with the sputtering and annealing processes separated), and thermal crystallization of amorphous alloys, have been studied. FeAlN films prepared by the ex situ technique exhibit the best soft magnetic characteristics. Thermal crystallization of amorphous alloys produced films with properties having the highest thermal stability. Films 800-to 1000-nm thick were found to have the best soft magnetic properties. The dependences of the properties of FeAlN films on nitrogen content and annealing temperature were established. The conditions favoring the preparation of thin nanostructured FeAlN films featuring the best soft magnetic characteristics (saturation induction B S = 1.8 T, coercivity H C = 1.2 Oe, magnetic susceptibility μ1 (1 MHz) = 3400) were determined.  相似文献   

11.
石旺舟  梁锐生  马学鸣  杨燮龙 《物理学报》2004,53(10):3614-3618
通过射频磁控溅射法制备了Fe_Si_B_Nb_Cu薄膜,采用x射线衍射与Mssb auer谱相结合分析了薄膜的微结构形态,研究了不同溅射功率对薄膜微结构的影响.其结果 表明:在较低溅射功率密度下,薄膜为无定型结构;随着溅射功率密度升高,沉积薄膜无需 热处理,便呈现出晶态和非晶态的混合相结构,晶态为纳米级的α_Fe(Si)和α_Fe(B)固溶 体;α_Fe(Si)相和α_Fe(B)相的体积分数、微结构组态、磁矩取向及宏观磁性能均随着溅 射功率的变化而变化. 关键词: 溅射功率 Fe_Si_B_Nb_Cu合金 薄膜微结构 磁矩取向  相似文献   

12.
In this work, an effective method to modulate the ferromagnetic properties of Mn-doped GeTe chalcogenide-based phase change materials is presented. The microstructure of the phase change magnetic material Ge1?x Mn x Te thin films was studied. The X-ray diffraction results demonstrate that the as-deposited films are amorphous, and the crystalline films are formed after annealing at 350 °C for 10 min. Crystallographic structure investigation shows the existence of some secondary magnetic phases. The lattice parameters of Ge1?x Mn x Te (x = 0.04, 0.12 and 0.15) thin films are found to be slightly different with changes of Mn compositions. The structural analysis clearly indicates that all the films have a stable rhombohedral face-centered cubic polycrystalline structure. The magnetic properties of the amorphous and crystalline Ge0.96Mn0.04Te were investigated. The measurements of magnetization (M) as a function of the magnetic field (H) show that both amorphous and crystalline phases of Ge0.96Mn0.04Te thin film are ferromagnetic and there is drastic variation between amorphous and crystalline states. The temperature (T) dependence of magnetizations at zero field cooling (ZFC) and field cooling (FC) conditions of the crystalline Ge0.96Mn0.04Te thin film under different applied magnetic fields were performed. The measured data at 100 and 300 Oe applied magnetic fields show large bifurcations in the ZFC and FC curves while on the 5,000 Oe magnetic field there is no deviation.  相似文献   

13.
Systematic variations of magnetic properties in amorphous TM-Y (TM = Mn, Fe, Co, Ni) alloys are investigated on the basis of a finite temperature theory of amorphous metallic magnetism which takes into account both thermal spin fluctuations and the fluctuations due to structural and configurations disorder. It is shown that the magnetic phase diagrams calculated in the most random atomic configuration explain qualitatively the spinglass (SG) in Mn-Y, the SG ferromagnetism (F) transition in Fe-Y, and the F-paramagnetism transition in Co-Y and Ni-Y alloys. Magnetization vs concentration curves and susceptibility vs concentration curves as well as the effective Bohr magneton numbers are also shown to be explained qualitatively or semi-quantitatively by the theory. Their miscroscopic mechanisms are elucidated by means of their electronic structures, magnetic couplings, and atomic short range order. It is found that the magnetism in Fe-Y and Mn-Y amorphous alloys is strongly influenced by the atomic short range order. The result explains different magnetic phase diagrams in amorphous Fe-Y alloys and experimental SG transition temperatures in amorphous Mn-Y alloys.  相似文献   

14.
Nearly stoichiometric thin films of In49Se48Sn3 were deposited at room temperature, by conventional thermal evaporation of the presynthesized materials, onto precleaned glass substrates. The microstructural studies on the as-deposited and annealed films, using transmission electron microscopy and diffraction (TEMD), revealed that the as-deposited films are amorphous in nature, while those annealed at 498 K are crystalline. The optical properties of the investigated films were determined from the transmittance and reflectance data, in the spectral range 650-2500 nm. An analysis of the optical absorption spectra revealed a non-direct energy gap characterizing the amorphous films, while both allowed and forbidden direct energy gaps characterized the crystalline films. The electrical resistance of the deposited films was carried out during heating and cooling cycles in the temperature range 300-600 K. The results show an irreproducible behavior, while after crystallization the results become reproducible. The analysis of the temperature dependence of the resistance (ln(R) vs. 1000/T) for crystalline films shows two straight lines corresponding to both extrinsic and intrinsic conduction. The room temperature I-V characteristics of the as-deposited films sandwiched between similar Ag metal electrodes shows an ohmic behavior, while non-ohmic behavior attributed to space charge limited conduction has been observed when the films are sandwiched between dissimilar Ag/Al metal electrodes.  相似文献   

15.
The residual stress instituted in Ni-Mn-Ga thin films during deposition is a key parameter influencing their shape memory applications by affecting its structural and magnetic properties. A series of Ni-Mn-Ga thin films were prepared by dc magnetron sputtering on Si(1 0 0) and glass substrates at four different sputtering powers of 25, 45, 75 and 100 W for systematic investigation of the residual stress and its effect on structure and magnetic properties. The residual stresses in thin films were characterized by a laser scanning technique. The as-deposited films were annealed at 600 °C for 1 h in vacuum for structural and magnetic ordering. The compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. The annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. It was found that the increase of sputtering power induced coarsening in thin films. Typical saturation magnetization and coercivity values were found to be 330 emu/cm3 and 215 Oe, respectively. The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature.  相似文献   

16.
Experimental evidence for ferromagnetic behavior of liquid droplets produced by laser ablation from amorphous alloys is presented for the first time. Thin films of amorphous magnetic materials are fabricated by a laser deposition technique in the presence and in the absence of magnetic field. The differences in the parameters of deposited films are attributed to the ferromagnetic properties of small liquid droplets. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 9, 686–689 (10 May 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

17.
The structural, magnetic and transport properties measurements carried out on Co thin films deposited by electron beam evaporation on GaAs substrate as a function of layer thickness ranging from 50 Å to 1000 Å are presented here. Structural measurements show the film to be amorphous in nature at lower thickness which becomes crystalline at higher thickness. Magnetic measurements show an increase in saturation magnetization (MS) with film thickness. MS values are found to vary from 521 emu/cm3 to 1180 emu/cm3 for thicknesses ranging from 50 Å to 1000 Å. The coercivity and saturation field value shows a systematic decrease up to 600 Å thickness and increase thereafter. Various microstructural parameters were also calculated using GIXRR technique. A clear grain growth is observed in AFM technique with film thickness and its influence on transport properties was also seen. Different surface morphology and magnetic domain structures were obtained on different thin film samples by AFM and MFM techniques, respectively. XPS measurements reveal formation of CoAs phase at the interface between Co and GaAs. All these results are discussed and interpreted in detail in this communication.  相似文献   

18.
In this paper we present the effect of low substrate temperature on structural, morphological, magnetic and optical properties of Ba-hexaferrite thin films. Films were deposited on single crystal Silicon (1 0 0) substrate employing the Pulsed Laser Deposition (PLD) technique. The structural, morphological, magnetic and optical properties are found to be strongly dependent on substrate temperature. The low substrate temperatures (room temperature to 200 °C) restrict the formation of larger grains. For the higher substrate temperature i.e., 400 °C, the grain size of the deposited thin film are much larger. The film grown at low substrate temperature do not show any anisotropy. As the substrate temperature is increased, the easy axis of the films alinged itself in the direction parallel to the film plane whereas the hard axis remained in the perpendicular direction. The higher substrate temperature caused the uniaxial magnetic anisotropy, which is very important in magnetic recording devices. The saturation magnetization and optical band gap energy values of 62 emu/cc and 1.75 eV, respectively, were achieved for the film of thickness 500 nm deposited at 400 °C. Higher values of coercivity, squareness and films thickness are associated with the growth of larger grains at higher substrate temperature.  相似文献   

19.
The electroplating technique is especially interesting due to its low cost, high throughput and high quality of deposit. Magnetic thin films are extensively used in various electronic devices including high-density recording media and micro electromechanical (MEMS) devices. Due to these potential applications, deposition of magnetic film draws special attention and it needs a cost-effective process. Electro-deposition being cost-effective, in the present work cobalt-based magnetic films were deposited electrochemically and deposition characteristics were studied. Effect of concentration of organic additives such as urea and thiourea in the presence of sodium hypophosphite was studied. Surface characterisation was carried out using X-ray diffractometer (XRD) and scanning electron microscope (SEM). Elemental compositions of the films were studied using atomic absorption spectrometer (AAS) and showed phosphorous content was less than 1%. Samples were subjected to vibrating sample magnetometer (VSM) and studies showed that organic additive has altered magnetic properties of these films. The reason for change in magnetic properties and structural characteristics because of the additives were discussed. Mechanical properties such as residual stress, hardness and adhesion of the films were also examined and reported.  相似文献   

20.
A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various silane concentrations. The influence of silane concentration on structural and electrical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time, optical emission spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties, Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism, why both OES and Raman can be used to diagnose the phase transition, was analyzed theoretically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号