首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass. However, the underlying factor behind the fizziness of these wines involves a second in-bottle alcoholic fermentation, also well known as the prise de mousse. The aim of this study was to assess whether a low temperature (13 °C) or a high temperature (20 °C) during the in-bottle fermentation might have an impact on the effervescence and the foaming properties (i.e., collar height and bubble size) of three French sparkling wines (a Crémant de Loire and two Champagne wines), under standard tasting conditions. Our results showed that sparkling wines elaborated at 13 °C and served in standard tasting conditions (i.e., 100 mL, 18 °C) had better ability to keep the dissolved CO2 (between 0.09 and 0.30 g/L) in the liquid phase than those elaborated at 20 °C (with P < 0.05). Most interestingly, we also observed, for the Crémant de Loire and for one Champagne wine, that the lower the temperature of the prise de mousse, the smaller (with P < 0.05) the bubbles in the foam collar throughout the wine tasting.  相似文献   

2.
A glass of sparkling wine or champagne is the preferred drink for the truly extraordinary moments in our lives. The connoisseur already celebrates and enjoys opening the bottle, carefully pouring it into the proper glass, and then admiring its color, aroma, taste, and, last but not least, the fizz. Looking a little bit deeper into the glass we discover that a lot of chemistry is involved, starting from the vineyard up to drinking the sparkling wine or champagne which increases our joy of it even more. What a wonderful start into the New Year! A votre santé!  相似文献   

3.
The so-called effervescence process, which enlivens champagne and sparkling wines tasting, is the result of the fine interplay between CO(2)-dissolved gas molecules, tiny air pockets trapped within microscopic particles during the pouring process, and some liquid properties. This critical review summarizes recent advances obtained during the past decade concerning the physicochemical processes behind the nucleation, rise, and burst of bubbles found in glasses poured with champagne and sparkling wines. Those phenomena observed in close-up through high-speed photography are often visually appealing. Let's hope that your enjoyment of champagne will be enhanced after reading this fully illustrated review dedicated to the deep beauties of nature often hidden behind many everyday phenomena (51 references).  相似文献   

4.
Stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography-quadrupole mass spectrometry (SBSE-LD/LVI-GC-qMS) was applied for the quantification of varietal and fermentative volatiles in sparkling wines. The analytical data were performed by using suitable standards of monoterpene hydrocarbons (α-pinene), monoterpenols (linalool), sesquiterpenoids (E,E-farnesol, Z-nerolidol, and guaiazulene), C13 norisoprenoids (β-ionone), aliphatic and aromatic alcohols (hexanol and 2-phenylethanol), and esters (hexyl acetate and ethyl decanoate) as model compounds. The wine volatiles were quantified using the structurally related standards. The methodology showed good linearity over the concentration range tested, with correlation coefficients ranging from 0.950 to 0.997, and a reproducibility of 9-18%. The SBSE-LD/LVI-GC-qMS methodology allowed, in a single run, the quantification of 71 wine volatiles that can be quantified accurately at levels lower than their respective olfactory thresholds. This methodology was used for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties. The variety and soil influenced significantly the volatile composition of sparkling wines; lower effect was observed for the ripening stage of grapes picked up one week before or after the maturity state.  相似文献   

5.
Storage temperature is one of the most important factors affecting wine aging. Along with bottling parameters (type of stopper, SO2 level and dissolved O2 in wine), they determine how fast wine will evolve, reach its optimum and decline in sensory quality. At the same time, lowering of the SO2 level in wine has been a hot topic in recent years. In the current work, we investigated how Riesling wine evolved on the molecular level in warm (~25 °C) and cool (~15 °C) conditions depending on the SO2 level in the wine (low, medium and high), flushing of the bottle’s headspace with CO2 and three types of stoppers (Diam 30, Diam 30 origin and Diam 5) with different OIR levels (0.8–1.3 mg) and OTR levels (0.3–0.4 mg/year). It was demonstrated that the evolution of primary and secondary aromas, wine color and low molecular weight sulfur compounds (LMWSCs) during the two years of aging mainly depended on the storage temperature. Variation in the SO2 level and CO2 in the headspace affected mostly certain LMWSCs (H2S, MeSH) and β-damascenone. New aspects of C13-norisprenoids and monoterpenoids behavior in Riesling wine with different levels of SO2 and O2 were discussed. All three types of stoppers showed very close wine preservation properties during the two years of storage. The sensory analysis revealed that, after only six months, the warm stored wines with a low SO2 level were more oxidized and different from the samples with medium and high SO2 levels. A similar tendency was also observed for the cool stored samples.  相似文献   

6.
A novel approach to measure carbon dioxide (CO2) in gaseous samples, based on a precise and accurate quantification by 13CO2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography–mass spectrometry (HS-GC–MS) method applicable in the routine determination of CO2. The main drawback of the GC methods discussed in the literature for CO2 measurement is the lack of a specific internal standard necessary to perform quantification. CO2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas (13CO2) on the basis of the stoichiometric formation of CO2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH13CO3). This method allows a precise measurement of CO2 concentration and was validated on various human postmortem gas samples in order to study its efficiency.  相似文献   

7.
Stir bar sorptive extraction and liquid desorption followed by large volume injection coupled to gas chromatography-quadrupole mass spectrometry (SBSE-LD/LVI-GC-qMS) had been applied for the determination of volatiles in wines. The methodology was optimised in terms of extraction time and influence of ethanol in the matrix; LD conditions, and instrumental settings. The optimisation was carried out by using 10 standards representative of the main chemical families of wine, i.e. guaiazulene, E,E-farnesol, β-ionone, geranylacetone, ethyl decanoate, β-citronellol, 2-phenylethanol, linalool, hexyl acetate and hexanol. The methodology shows good linearity over the concentration range tested, with correlation coefficients higher than 0.9821, a good reproducibility was attained (8.9-17.8%), and low detection limits were achieved for nine volatile compounds (0.05-9.09 μg L−1), with the exception of 2-phenylethanol due to low recovery by SBSE. The analytical ability of the SBSE-LD/LVI-GC-qMS methodology was tested in real matrices, such as sparkling and table wines using analytical curves prepared by using the 10 standards where each one was applied to quantify the structurally related compounds. This methodology allowed, in a single run, the quantification of 67 wine volatiles at levels lower than their respective olfactory thresholds. The proposed methodology demonstrated to be easy to work-up, reliable, sensitive and with low sample requirement to monitor the volatile fraction of wine.  相似文献   

8.
In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor-liquid and liquid-liquid) and densities are considered for the mixtures involved. Different approaches for modeling pure CO2 and mixtures are compared. CO2 is modeled as non self-associating fluid, or as self-associating component having two, three and four association sites. Moreover, when mixtures of CO2 with polar compounds (water, alcohols and glycols) are considered, the importance of cross-association is investigated. The cross-association is accounted for either via combining rules or using a cross-solvation energy obtained from experimental spectroscopic or calorimetric data or from ab initio calculations. In both cases two adjustable parameters are used when solvation is explicitly accounted for. The performance of CPA using the various modeling approaches for CO2 and its interactions is presented and discussed, comparatively to various recent published investigations. It is shown that overall very good correlation is obtained for binary mixtures of CO2 and water or alcohols when the solvation between CO2 and the polar compound is explicitly accounted for, whereas the model is less satisfactory when CO2 is treated as self-associating compound.  相似文献   

9.
The effect of dissolved carbon dioxide on the glass transition temperature of a polymer, PMMA, has been investigated using molecular probe chromatography. The probe solute was iso-octane, and the specific retention volumes of this solute in pure PMMA and mixtures of PMMA with CO2 were measured over a temperature range of 0 to 180°C and CO2 pressures from 1 to 75 atm. The amount of CO2 dissolved in the polymer was calculated from a model fit to previously published solubility data determined chromatographically. Classical van't Hoff-type plots were used to determine the glass transition temperature of CO2-impregnated PMMA from low pressure up to 46 atm of CO2. Solvent-induced plasticization was observed with the glass transition temperature decreasing by about 40°C. At some pressures, glass transitions at low temperatures could not be determined from the van't Hoff plots because of the proximity of the polymer glass transition temperature to the gas–liquid transition temperature for CO2. For these pressures, a new method was developed to determine the glass transition composition. The glass transition pressure was then calculated from the measured composition and temperature using an isotherm model. In every case, the glass transition temperature decreased linearly with increasing concentration of CO2 in the polymer. However, at higher compositions, the glass transition pressure decreased with increasing composition and decreasing temperature. The observed retention volume of iso-octane with PMMA in a glassy state was correlated with an adsorption model developed from a theory for liquid–solid chromatography derived by Martire. This model accurately described the observed decrease in retention of iso-octane by adsorption on the surface of glassy PMMA with increasing concentration of CO2 dissolved in the polymer. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2537–2549, 1998  相似文献   

10.
《Analytical letters》2012,45(11-12):2413-2421
Abstract

In the present work the influence of carbonic anhydrase (CA) on the gaseous exchanges of CO2 and NH3 in a buffered solution has been studied by means of a potentiometric technique involving the use of an urease sensor, whose sensing element was a commercial pNH3 gas sensing electrode. As pointed out in previous works, suitable experimental conditions were chosen in order to have a speed of CO2 diffusion sharply enhanced by CA. In particular the analytical aspect of NH3 production from a buffered urea solution, in the presence and in the absence of CA, is considered.

The results obtained in the present work indicate a further possible application of this system to the study of living organism and tangibly support all the previous studies presented on this topic.  相似文献   

11.
A new optical CO2 sensor based on the luminescence intensity change of the europium(III) complex tris(thenoyltrifluoroacetonato) europium(III) dihydrate ([Eu(tta)3]) caused by the absorption change of various pH indicators—thymol blue, phenol red, or cresol red—with CO2 was developed and its CO2 sensing properties were investigated. For all the CO2 sensors using pH indicators the observed luminescence intensity from [Eu(tta)3] at 613 nm increased with increasing CO2 concentration. The linear calibration method based on the plot of (I100–I0)/(I–I0) versus the inverse of CO2 concentration was suggested, where I0 and I100 were luminescence intensities at 613 nm of the CO2 sensor film in 100% nitrogen and 100% gaseous CO2. In all cases the plots showed good linearity and the correlation factors of the plots, r2, were 0.991 for thymol blue, 0.990 for phenol red, and 0.998 for cresol red. The slopes of the plots (A/B) for thymol blue, phenol red, and cresol red were 2.2, 5.2, and 9.0%, respectively. The response times of the CO2 sensor film were 4.0 s for thymol blue, 4.4 s for phenol red, and 8.8 s for cresol red for switching from nitrogen to CO2, and the recovery times of films were 36 s for thymol blue, 39.2 s for phenol red, and 56.6 s for cresol red for switching from CO2 to nitrogen. The signal changes were fully reversible and hysteresis was not observed during the measurements. The highly sensitive CO2 sensor was developed using thymol blue as an indicator for the CO2-sensing probe.  相似文献   

12.
Slow pyrolysis experiments of China fir (Cunninghamia lanceolata) wood were performed in a vertical tubular furnace at various heating rates. The raw material was pretreated by impregnation with phosphoric acid solutions of various concentrations for given times. The evolution of the gaseous products CO, CO2, H2 and CH4 was analyzed online by using gas spectrometry to investigate the effect of phosphoric acid on the pyrolytic gaseous products of biomass. The addition of phosphoric acid was shown to significantly reduce the pyrolysis temperature necessary for the production of CO, CO2 and H2 gases, and the pyrolysis variables exerted an influence on the amount of the gases released. Moreover, phosphoric acid appreciably depressed the CO, CO2 and CH4 production, and promoted H2, especially when a higher heating rate was employed. This suggested that phosphoric acid catalyzed both the primary thermal decomposition of biopolymers and the secondary reactions that took place among the pyrolytic vapor products.  相似文献   

13.
The viscosity of imidazolium-based ionic liquids (ILs) saturated with gaseous, liquid and supercritical carbon dioxide (CO2) was measured by a high-pressure viscometer at three different temperatures (25, 50, and 70 °C). The high-pressure viscosity of 1-ethyl-3-methylimidazolium ([EMIm]), 1-n-hexyl-3-methylimidazolium ([HMIm]), and 1-n-decyl-3-methylimidazolium ([DMIm]) cations with a common anion, bis(trifluoromethylsulfonyl)amide ([Tf2N]), saturated with CO2 was measured up to a maximum of 287 bar. As CO2 pressure is increased the viscosity of the IL mixture dramatically decreases. While, the ambient pressure viscosity of 1-alkyl-3-methyl-imidazolium [Tf2N] ILs increases significantly with increasing chain length, the viscosity of all the CO2-saturated ILs becomes very similar at high CO2 pressures. From previous vapor–liquid equilibrium data, the viscosity with concentration was determined and found to be the primary factor to describe the fractional viscosity reduction. Several predictive and correlative methods were investigated for the mixture viscosity given pure component properties and include arithmetic mixing rules, the Irving (Predictive Arrhenius) model, Grunberg equation, etc. The modified Grunberg model with one adjustable parameter provided an adequate fit to the data.  相似文献   

14.
A study of the decomposition mechanisms of peroxydodecanoic (RCO3H) and perbenzoic (φCO3H) acids in cyclohexane at both reflux temperature and less than reflux temperature (i.e. with and without dissolved oxygene) and comparisons of all the products from these reactions with those obtained from the decomposition of dodecanoyl- and benzoyl-peroxydes under the same conditions, leads to the following conclusions: (a) in both cases there is a radical mechanism, the initiating step being the rupture of the O-O bonds giving RCO2 and φCO2, (b) under reflux (i.e. without oxygen) the radical RCO2 undergoes rapid decomposition and the resulting R- gives rise to a chain reaction leading to the alcohol ROH. The φCO2 radical undergoes much slower decomposition and through chain transfer with the solvent produces φCO2H and cyclohexanol. These reactions are fast; (c) at less than reflux temperature (i.e. in presence of dissolved oxygen) R radicals or S (solvent) radicals combine with the oxygen giving peroxy and oxy radicals. These species are electrophilic and therefore do not lead to the breaking of the O-O bond of the peracid. Rather, the acid hydrogen is attacked, giving RCO3 or φCO3, radicals. Through a series of reactions involving aldehyde intermediates, the corresponding carboxylic acids are obtained. These reactions are much slower than those at reflux temperature.  相似文献   

15.
A flow injection analyser coupled with a gas diffusion membrane and a conductometric microdetector was adapted for the field analysis of natural concentrations of free dissolved CO2 and dissolved inorganic carbon in natural waters and used in a number of field campaigns for marine water monitoring. The dissolved gaseous CO2 presents naturally, or that generated by acidification of the sample, is separated by diffusion using a hydrophobic semipermeable gas porous membrane, and the permeating gas is incorporated into a stream of deionised water and measured by means of an electrical conductometric microdetector. In order to make the system suitable and easy to use for in-field measurements aboard oceanographic ships, the single components of the analyser were compacted into a robust and easy to use system. The calibration of the system is carried out by using standard solutions of potassium bicarbonate at two concentration ranges. Calibration and sample measurements are carried out inside a temperature-constant chamber at 25 °C and in an inert atmosphere (N2). The detection and quantification limits of the method, evaluated as 3 and 10 times the standard deviation of a series of measurements of the matrix solution were 2.9 and 9.6 μmol/kg of CO2, respectively. Data quality for dissolved inorganic carbon was checked with replicate measurements of a certified reference material (A. Dickson, Scripps Institution of Oceanography, University of California, San Diego), both accuracy and repeatability were −3.3% and 10%, respectively. Optimization, performance qualification of the system and its application in various natural water samples are reported and discussed. In the future, the calibration step will be operated automatically in order to improve the analytical performance and the applicability will be increased in the course of experimental surveys carried out both in marine and freshwater ecosystems. Considering the present stage of development of the method, it can only be applied for studying of the carbon cycle in oxic environments.  相似文献   

16.
This study aims at contributing to quinine extraction using supercritical CO2 and ethanol as a co-solvent. The diffusion coefficients of quinine in supercritical CO2 are measured using the Taylor dispersion technique when quinine is pre-dissolved in ethanol. First, the diffusion coefficients of pure ethanol in the supercritical state of CO2 were investigated in order to get a basis for seeing a relative change in the diffusion coefficient with the addition of quinine. We report measurements of the diffusion coefficients of ethanol in scCO2 in the temperature range from 304.3 to 343 K and pressures of 9.5, 10 and 12 MPa. Next, the diffusion coefficients of different amounts of quinine dissolved in ethanol and injected into supercritical CO2 were measured in the same range of temperatures at p = 12 Mpa. At the pressure p = 9.5 MPa, which is close to the critical pressure, the diffusion coefficients were measured at the temperature, T = 343 K, far from the critical value. It was found that the diffusion coefficients are significantly dependent on the amount of quinine in a small range of its content, less than 0.1%. It is quite likely that this behavior is associated with a change in the spatial structure, that is, the formation of clusters or compounds, and a subsequent increase in the molecular weight of the diffusive substance.  相似文献   

17.
A series of orthorhombic photocatalysts (AgNbO3)1−x(NaNbO3)x solid solutions have been synthesized by a solid-state reaction method. The composition dependence of the photophysical and photocatalytic properties of synthesized solid solutions has been investigated systematically. With an increase in the content of NaNbO3, we found that (1) the lattice parameters decreased; (2) the Nb-O bond length in NbO6 octahedron reduced; (3) the band gap increased; and (4) the mean particle size decreased while the Brunauer-Emmett-Teller (BET) surface area increased. Photocatalytic activities of the (AgNbO3)1−x(NaNbO3)x (0?x?0.5) samples were evaluated from gaseous 2-propanol (IPA) decomposition into acetone and CO2 under visible-light irradiation emitted from blue-light-emitting diodes (BLEDs; light intensity: 0.01 mW cm−2). Among all the samples, the (AgNbO3)0.6(NaNbO3)0.4 sample showed the highest photocatalytic activity.  相似文献   

18.
The aim of present project was to develop a microcosm experimental method for estimation of NOx and CO2 emission of microbial origin from cultivated soil. The effect of different factors (such as temperature, water supply, mineral-N source and organic matter addition, role of soil organisms and heavy metal contamination) that controlling the accumulation of N2O and CO2 in soil atmosphere and release to air was studied in closed microcosm laboratory model experiments. The headspace gas composition of closed glass vessels of 800-1200 cm3 containing 100-200 g brown forest soil sample was analysed. The N2O and CO2 concentration of gas samples was analysed by gas chromatographic methods and NO-content by means of chemiluminescent detection. Concerning the results, it can be stated that the applied microcosm experimental model proved to be a suitable tool for detecting the effect of factors influencing the NOx and CO2 release from agricultural soil. The temporal changes of N2O and CO2 concentration demonstrated the impact of the coupled microbial processes resulting in these greenhouse gases. The gas production depended on the soil moisture level, temperature and C/N ratio significantly. The inhibitory effect of toxic heavy metals (e.g. Cd) could also be affected by the C/N ratio. The appearance of NO as an intermediate of microbial processes was observed as well.  相似文献   

19.
The partial molar volume of a gas that is dissolved at high dilution in a solvent is required to express the influence of pressure on Henry's constant as well as to describe the volume change (expansion) of the liquid caused by the dissolved gas. The correlations of recently published experimental results for the solubility of some selected gases (CO2, Xe, CH4, CF4, H2, CO, O2) in three imidazolium-based ionic liquids (1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-n-butyl-3-methylimidazolium methyl sulfate ([bmim][CH3SO4]), and 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N])) determined by the synthetic method were re-evaluated by also considering the experimentally determined volumetric properties. The new evaluation does not change the published results for Henry's constants, but additionally yields reliable information on the partial molar volume of those gases in the mentioned ionic liquids at temperatures from about 293 to 413 K.  相似文献   

20.
D. Pyo  D. Ju 《Chromatographia》1994,38(1-2):79-82
Summary Adding various components to supercritical carbon dioxide in supercritical fluid chromatography can extend or significantly alter the solvating properties. Polar samples which are difficult to analyze with pure supercritical CO2 because of their high polarity can be separated by addidng polar modifiers. In this paper, a new mixing method using an HPLC filter for adding polar modifier to CO2 is described. Although several filters were tried, only one could keep the amount of modifier in the mobile phase constant for a long time. The amount of water or methanol dissolved in supercritical CO2 was measured by an amperometric microsensor made of a thin film of perfluorosulfonate ionomer (PFSI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号