首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
In recent years, near-infrared (NIR) hyperspectral imaging has proved its suitability for quality and safety control in the cereal sector by allowing spectroscopic images to be collected at single-kernel level, which is of great interest to cereal control laboratories. Contaminants in cereals include, inter alia, impurities such as straw, grains from other crops, and insects, as well as undesirable substances such as ergot (sclerotium of Claviceps purpurea). For the cereal sector, the presence of ergot creates a high toxicity risk for animals and humans because of its alkaloid content. A study was undertaken, in which a complete procedure for detecting ergot bodies in cereals was developed, based on their NIR spectral characteristics. These were used to build relevant decision rules based on chemometric tools and on the morphological information obtained from the NIR images. The study sought to transfer this procedure from a pilot online NIR hyperspectral imaging system at laboratory level to a NIR hyperspectral imaging system at industrial level and to validate the latter. All the analyses performed showed that the results obtained using both NIR hyperspectral imaging cameras were quite stable and repeatable. In addition, a correlation higher than 0.94 was obtained between the predicted values obtained by NIR hyperspectral imaging and those supplied by the stereo-microscopic method which is the reference method. The validation of the transferred protocol on blind samples showed that the method could identify and quantify ergot contamination, demonstrating the transferability of the method. These results were obtained on samples with an ergot concentration of 0.02 % which is less than the EC limit for cereals (intervention grains) destined for humans fixed at 0.05 %.
Online Abstract Figure
Pictures showing a the manual removal of ergot bodies and b the observation by the stereo-microscopic method (official method); c the metallic holder with the reference material, and d the NIR hyperspectral SisuCHEMA instrument  相似文献   

3.
A rapid method based on hyperspectral imaging for detection of Escherichia coli contamination in fresh vegetable was developed. E. coli K12 was inoculated into spinach with different initial concentrations. Samples were analyzed using a colony count and a hyperspectroscopic technique. A hyperspectral camera of 400-1000 nm, with a spectral resolution of 5 nm was employed to acquire hyperspectral images of packaged spinach. Reflectance spectra were obtained from various positions on the sample surface and pretreated using Sawitzky-Golay. Chemometrics including principal component analysis (PCA) and artificial neural network (ANN) were then used to analyze the pre-processed data. The PCA was implemented to remove redundant information of the hyperspectral data. The ANN was trained using Bayesian regularization and was capable of correlating hyperspectral data with number of E. coli. Once trained, the ANN was also used to construct a prediction map of all pixel spectra of an image to display the number of E. coli in the sample. The prediction map allowed a rapid and easy interpretation of the hyperspectral data. The results suggested that incorporation of hyperspectral imaging with chemometrics provided a rapid and innovative approach for the detection of E. coli contamination in packaged fresh spinach.  相似文献   

4.
Hyperspectral images contain both spectral and spatial image information and were investigated to characterize the freshness of fish. However, most studies of this application have focused on spectral signals rather than image features. The goal of this work was to investigate the ability of spectral and image textural variables for predicting the chemical and physical qualities of fish, respectively, and to optimize the variables for the specific quality determination. The chemical (total volatile basic nitrogen, TVB-N) and physical (texture profile analysis, TPA) properties were investigated. Partial least square (PLS) was applied to develop fish quality prediction models with the spectral and textural variables from the hyperspectral images. The results showed that the TVB-N content of fish fillets was accurately predicted using the spectra. Meanwhile, the TPA parameters were determined through the image textural features with high accuracy, which indicated image textural features were highly related with the TPA parameters. Moreover, spectral and textural features were also extracted from fish eyes and gills and were further used to predict the intact fish quality, taking advantage of the freshness sensitivity of the eyes and gills. The results illustrate that spectra from fish eyes and gills are a potential tool to predict the TVB-N content and TPA parameters for intact fish.  相似文献   

5.
6.
A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new “leave one out” method, so that the number of original variables resulted further reduced.  相似文献   

7.
Standard methods for determining the raw material content of compound feed are little exploited, except for the identification of meat and bone meal in feeds. In this work, near-infrared (NIR) spectroscopy and real-time polymerase chain reaction (PCR) were applied in order to establish new and fast methods for quantification of soybean meal content in compound feeds. The best prediction quality was achieved by using a model based on NIR spectroscopy (R 2 = 0.9857, standard error of cross-validation 1.1065). Furthermore, a sensitive qualitative detection method by using the real-time PCR was developed (R 2 = 0.976, slope −3.7599). Finally, the differences between the real-time PCR result and the NIR spectroscopy result for a given sample were also treated, and we found that the NIR spectroscopy method provided quite accurate results which approach closely those of the real-time PCR method. Hui Li and Xiaowen Lv contributed equally to this work.  相似文献   

8.
This paper indicates the possibility to use near infrared (NIR) spectroscopy as a rapid method to predict quantitatively the content of caffeine and total polyphenols in green tea. A partial least squares (PLS) algorithm is used to perform the calibration. To decide upon the number of PLS factors included in the PLS model, the model is chosen according to the lowest root mean square error of cross-validation (RMSECV) in training. The correlation coefficient R between the NIR predicted and the reference results for the test set is used as an evaluation parameter for the models. The result showed that the correlation coefficients of the prediction models were R = 0.9688 for the caffeine and R = 0.9299 for total polyphenols. The study demonstrates that NIR spectroscopy technology with multivariate calibration analysis can be successfully applied as a rapid method to determine the valid ingredients of tea to control industrial processes.  相似文献   

9.
Near-infrared (NIR) imaging systems simultaneously record spectral and spatial information. Near-infrared imaging was applied to the identification of (E,Z)-4-(3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl)morpholine (dimethomorph) in both mixed samples and commercial formulation in this study. The distributions of technical dimethomorph and additive in the heterogeneous counterfeit product were obtained by the relationship imaging (RI) mode. Furthermore, a series of samples which consisted of different contents of uniformly distributed dimethomorph were prepared and three data cubes were generated for each content. The spectra extracted from these images were imported to establish the partial least squares model. The model??s evaluating indicators were: coefficient of determination (R 2) 99.42 %, root mean square error of calibration (RMSEC) 0.02612, root mean square error of cross-validation (RMSECV) 0.01693, RMSECVmean 0.03577, relative standard error of prediction (RSEP) 0.01999, and residual predictive deviation (RPD) 15.14. Relative error of prediction of the commercial formulation was 0.077, indicating the predicted value correlated with the real content. The chemical value reconstruction image of dimethomorph formulation products was calculated by a MATLAB program. NIR microscopy imaging here manifests its potential in identifying the active component in the counterfeit pesticide and quantifying the active component in its scanned image.  相似文献   

10.
The use of near infrared (NIR) hyperspectral imaging and hyperspectral image analysis for distinguishing between hard, intermediate and soft maize kernels from inbred lines was evaluated. NIR hyperspectral images of two sets (12 and 24 kernels) of whole maize kernels were acquired using a Spectral Dimensions MatrixNIR camera with a spectral range of 960-1662 nm and a sisuChema SWIR (short wave infrared) hyperspectral pushbroom imaging system with a spectral range of 1000-2498 nm. Exploratory principal component analysis (PCA) was used on absorbance images to remove background, bad pixels and shading. On the cleaned images, PCA could be used effectively to find histological classes including glassy (hard) and floury (soft) endosperm. PCA illustrated a distinct difference between glassy and floury endosperm along principal component (PC) three on the MatrixNIR and PC two on the sisuChema with two distinguishable clusters. Subsequently partial least squares discriminant analysis (PLS-DA) was applied to build a classification model. The PLS-DA model from the MatrixNIR image (12 kernels) resulted in root mean square error of prediction (RMSEP) value of 0.18. This was repeated on the MatrixNIR image of the 24 kernels which resulted in RMSEP of 0.18. The sisuChema image yielded RMSEP value of 0.29. The reproducible results obtained with the different data sets indicate that the method proposed in this paper has a real potential for future classification uses.  相似文献   

11.
Pérez NF  Boqué R  Ferré J 《Talanta》2010,83(2):475-481
A novel method for establishing multivariate specifications of food commodities is proposed. The specifications are established for discriminant partial least squares (DPLS) by setting limits on the predictions of the DPLS model together with Hotelling T2 and square error of prediction (SPE). These limits can be tuned depending on whether type I error (i.e. a correct sample is declared out-of-specification) or type II error (i.e. an out-of-specification sample is declared within specifications) need to be minimized. The methodology is illustrated with a set of NIR spectra of Italian olive oils, corresponding to five regions and the class Liguria is the class of interest. The results demonstrate the possibility of establishing multivariate specification for olive oils from the Liguria region on the basis of spectral data obtaining type I and type II errors lower than 5%.  相似文献   

12.
This study attempted the feasibility to use near infrared (NIR) spectroscopy as a rapid analysis method to qualitative and quantitative assessment of the tea quality. NIR spectroscopy with soft independent modeling of class analogy (SIMCA) method was proposed to identify rapidly tea varieties in this paper. In the experiment, four tea varieties from Longjing, Biluochun, Qihong and Tieguanyin were studied. The better results were achieved following as: the identification rate equals to 90% only for Longjing in training set; 80% only for Biluochun in test set; while, the remaining equal to 100%. A partial least squares (PLS) algorithm is used to predict the content of caffeine and total polyphenols in tea. The models are calibrated by cross-validation and the best number of PLS factors was achieved according to the lowest root mean square error of cross-validation (RMSECV). The correlation coefficients and the root mean square error of prediction (RMSEP) in the test set were used as the evaluation parameters for the models as follows: R = 0.9688, RMSEP = 0.0836% for the caffeine; R = 0.9299, RMSEP = 1.1138% for total polyphenols. The overall results demonstrate that NIR spectroscopy with multivariate calibration could be successfully applied as a rapid method not only to identify the tea varieties but also to determine simultaneously some chemical compositions contents in tea.  相似文献   

13.
Banana (stalk, leaf, rhizome, rachis and stem) and coffee (leaf and husks) residues are promising feedstock for fuel and chemical production. In this work we show the potential of near-infrared spectroscopy (NIR) and multivariate analysis to replace reference methods in the characterization of some constituents of coffee and banana residues. The evaluated parameters were Klason lignin (KL), acid soluble lignin (ASL), total lignin (TL), extractives, moisture, ash and acid insoluble residue (AIR) contents of 104 banana residues (B) and102 coffee (C) residues from Brazil. PLS models were built for banana (B), coffee (C) and pooled samples (B + C). The precision of NIR methodology was better (p < 0.05) than the reference method for almost all the parameters, being worse for moisture. With the exception of ash (B and C) and ASL (C) content, which was predicted poorly (R2 < 0.80), the models for all the analytes exhibited R2 > 0.80. The range error ratios varied from 4.5 to 16.0. Based on the results of external validation, the statistical tests and figures of merit, NIR spectroscopy proved to be useful for chemical prediction of banana and coffee residues and can be used as a faster and more economical alternative to the standard methodologies.  相似文献   

14.
A method for calibration and validation subset partitioning   总被引:13,自引:0,他引:13  
This paper proposes a new method to divide a pool of samples into calibration and validation subsets for multivariate modelling. The proposed method is of value for analytical applications involving complex matrices, in which the composition variability of real samples cannot be easily reproduced by optimized experimental designs. A stepwise procedure is employed to select samples according to their differences in both x (instrumental responses) and y (predicted parameter) spaces. The proposed technique is illustrated in a case study involving the prediction of three quality parameters (specific mass and distillation temperatures at which 10 and 90% of the sample has evaporated) of diesel by NIR spectrometry and PLS modelling. For comparison, PLS models are also constructed by full cross-validation, as well as by using the Kennard-Stone and random sampling methods for calibration and validation subset partitioning. The obtained models are compared in terms of prediction performance by employing an independent set of samples not used for calibration or validation. The results of F-tests at 95% confidence level reveal that the proposed technique may be an advantageous alternative to the other three strategies.  相似文献   

15.
Near-infrared (NIR) hyperspectral imaging was used to study three strains of each of three Fusarium spp. (Fusarium subglutinans, Fusarium proliferatum and Fusarium verticillioides) inoculated on potato dextrose agar in Petri dishes after either 72 or 96?h of incubation. Multivariate image analysis was used for cleaning the images and for making principal component analysis (PCA) score plots and score images and local partial least squares discriminant analysis (PLS-DA) models. The score images, including all strains, showed how different the strains were from each other. Using classification gradients, it was possible to show the change in mycelium growth over time. Loading line plots for principal component (PC) 1 and PC2 explained variation between the different Fusarium spp. as scattering and chemical differences (protein production), respectively. PLS-DA prediction results (including only the most important strain of each species) showed that it was possible to discriminate between species with F. verticillioides the least correctly predicted (between 16 and 47?% pixels correctly predicted). For F. subglutinans, 78-100?% pixels were correctly predicted depending on the training and test sets used. Similarly, the percentage correctly predicted values of F. proliferatum were 60-80?%. Visualisation of the mycelium radial growth in the PCA score images was made possible due to the use of NIR hyperspectral imaging. This is not possible with bulk spectroscopy in the visible or NIR regions.  相似文献   

16.
Near-infrared (NIR) fluorescence imaging is promising due to the high penetration depths and minimal levels of autofluorescence in living systems. However, it suffers from low fluorescent quantum yield, and metal-enhanced fluorescence (MEF) is considered to be a promising technique to overcome this. Stimuli-responsive NIR fluorescence enhancement shows remarkable potential for applications in medical imaging and diagnosis. Herein, we successfully fabricated an enzyme-responsive near-infrared sensor based on MEF by functionalizing gold nanoparticles with NIR fluorophores and enzyme-responsive self-aggregation moieties. The NIR fluorescence of fluorophores on the gold nanoparticles was significantly enhanced due to increases both in the light scattering intensity and in the radiative decay rate (k r) of the NIR fluorophores, along with relatively small variation in the nonradiative decay rate. This novel strategy for NIR fluorescent sensors should be particularly promising for NIR fluorescence imaging of enzyme activities and early diagnosis based on rationally designed nanomaterials.  相似文献   

17.
This paper proposes an analytical method for simultaneous near-infrared (NIR) spectrometric determination of α-linolenic and linoleic acid in eight types of edible vegetable oils and their blending. For this purpose, a combination of spectral wavelength selection by wavelet transform (WT) and elimination of uninformative variables (UVE) was proposed to obtain simple partial least square (PLS) models based on a small subset of wavelengths. WT was firstly utilized to compress full NIR spectra which contain 1413 redundant variables, and 42 wavelet approximate coefficients were obtained. UVE was then carried out to further select the informative variables. Finally, 27 and 19 wavelet approximate coefficients were selected by UVE for α-linolenic and linoleic acid, respectively. The selected variables were used as inputs of PLS model. Due to original spectra were compressed, and irrelevant variables were eliminated, more parsimonious and efficient model based on WT-UVE was obtained compared with the conventional PLS model with full spectra data. The coefficient of determination (r2) and root mean square error prediction set (RMSEP) for prediction set were 0.9345 and 0.0123 for α-linolenic acid prediction by WT-UVE-PLS model. The r2 and RMSEP were 0.9054, 0.0437 for linoleic acid prediction. The good performance showed a potential application using WT-UVE to select NIR effective variables. WT-UVE can both speed up the calculation and improve the predicted results. The results indicated that it was feasible to fast determine α-linolenic acid and linoleic acid content in edible oils using NIR spectroscopy.  相似文献   

18.
Multi-element (H,C,N,S) stable isotope ratio analysis was tested for its suitability as a means for geographical provenance assignment of lamb meat from several European regions. The defatted dry matter (crude protein fraction) from lamb meat was found to be a suitable probe for "light" element stable isotope ratio analysis. Significant differences were observed between the multi-element isotope ratios of lamb samples from different regions. The mean hydrogen isotopic ratios of the defatted dry matter from lamb were found to be significantly correlated with the mean hydrogen isotopic ratios of precipitation and groundwater in the production regions. Carbon and nitrogen isotopic ratios were influenced by feeding practices and climate. Sulfur isotopic ratios were influenced by geographical location and surface geology of the production region. The results permitted differentiation of lamb meat, from most production regions, by inspection. However, more sophisticated evaluation of the data using multivariate methods, such as linear discriminant analysis, achieved 78% correct classification.  相似文献   

19.
This paper indicates the possibility to use near infrared spectroscopy (NIR) combined with PLS as a rapid method to estimate the quality of green tea. NIR is used to build calibration models to predict the content of caffeine, epigallocatechin gallate (EGCG) and epicatechin (EC) and for the prediction of the total antioxidant capacity of green tea. For the determination of the total antioxidant capacity, the trolox equivalent antioxidant capacity (TEAC) method is used. Until now, the prediction of the antioxidant capacity as such by use of NIR has not been reported. For caffeine and TEAC, models are build for the whole green tea leaves and also for the ground leaves. For the polyphenols (EGCG and EC), only models for the whole leaves are investigated. A partial least squares (PLS) algorithm is used to perform the calibration. To decide upon the number of PLS factors included in the PLS model, the model with the lowest root mean square error of cross-validation (RMSECV) for the training set is chosen. The correlation coefficient (r) between the predicted and the reference results for the test set is used as an evaluation parameter for the models: for the TEAC results r=0.90 for the model with the whole leaves, r=0.86 for the model with the powdered leaves are obtained. The caffeine prediction model has a correlation coefficient r=0.96 for the whole leaves and r=0.93 for the ground leaves. The correlation coefficient for the EGCG and the EC content models are, respectively 0.83 and 0.44.  相似文献   

20.
Biomaterials for in vivo fluorescence imaging are required to be biocompatible, nontoxic, photostable and highly fluorescent. Fluorescence must be in the near infrared (NIR) region of the electromagnetic spectrum to avoid absorption and autofluorescence of endogenous tissues. NIR fluorescent polystyrene nanoparticles may be considered ideal biomaterials for in vivo imaging applications. These NIR nanoparticles were prepared by a swelling process of polystyrene template nanoparticles with a hydrophobic NIR dye dissolved in a water‐miscible swelling solvent, a method developed for preparation of nonbiodegradable nanoparticles, for NIR fluorescent bioimaging applications. This method overcomes common problems that occur with dye entrapment during nanoparticle formation such as loss of fluorescence and size polydispersity. Fluorescence intensity of the nanoparticles was found to be size dependent, and was optimized for differently sized nanoparticles. The resulting NIR nanoparticles were also found to be more fluorescent and highly photostable compared to the free dye in solution, showing their potential as biomaterials for in vivo fluorescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号