首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds’ feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5–8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.  相似文献   

2.
In the present work we optimised the separation of battery of key UV non-transparent low-molecular-mass compounds having possible endocrine disrupting compounds (EDCs) activity or which may be used as the endocrine effect biomarkers. Simple optimization strategy was based on strong temperature effect that is driven by electrostatic interactions between macrocyclic mobile phase additives like cyclodextrins and eluted components of interest under C18 stationary phase and acetonitrile/water mobile phase conditions. Particularly, the effect of temperature involving native β-cyclodextrin and its hydroxypropyl derivative to improve separation of number of natural (d-equilenin, equilin, estetrol, estriol, estrone, 17β-estradiol, 17α-hydroxyprogesterone, 20α-hydroxyprogesterone, cortisol, cortisone, progesterone, testosterone, tetrahydrocortisol and tetrahydrocortisone) and artificial steroids (ethynylestradiol, norgestrel isomers, medroxyprogesterone, mestranol, methyltestosterone, norethindrone, 17α-estradiol) as well as non-steroidal compounds (diethylstilbesterol, bisphenol A, 4-tert-butylphenol, dimethyl phthalate, dibutyl phthalate and dioctyl phthalate) was investigated. It has been found that successful isocratic separation of 27 chemicals can be achieved using acetonitrile/water eluents modified with β-cyclodextrin or hydroxypropyl-β-cyclodextrin at concentration of 10 mM and temperature of 47 °C. Separation protocol is simple, reliable, direct and non-radioactive and may be easily adapted for rapid separation and quantification of wide range of given steroids and related EDCs in environmental samples, particularly those that are characterised by unstable biological matrix and components of interest load.  相似文献   

3.
A new method for separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction (SPE) with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES has been developed. The separation of the target analytes from the aqueous solution containing the target analytes and Bismuthiol-II-immobilized magnetic nanoparticles was simply achieved by applying external magnetic field. Optimal experimental conditions including pH, sample volume, eluent concentration and volume and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limits for Cr, Cu and Pb with enrichment factors of 96, 95 and 87 were found to be 0.043, 0.058 and 0.085 ng mL−1 and their relative standard deviations (R.S.D.s) were 3.5%, 4.6% and 3.7% (n = 5, C = 2 ng mL−1), respectively. The method was validated with certified reference material (GBW50009-88) of environmental water sample and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in river and lake water samples. Compared with established methods, the proposed method is characterized with high enrichment factor, fast separation and low detection limits.  相似文献   

4.
A method based on capillary electrophoresis with electrochemical detection has been developed for the separation and determination of mannitol, sucrose, glucose, and fructose in Ligustrum lucidum Ait. for the first time. Effects of several important factors such as the concentration of NaOH, separation voltage, injection time, and detection potential were investigated to acquire the optimum conditions. The detection electrode was a 300 μm diameter copper disc electrode at a working potential of +0.65 V (versus saturated calomel electrode (SCE)). The four analytes can be well separated within 13 min in a 40 cm length fused-silica capillary at a separation voltage of 12 kV in a 75 mM NaOH aqueous solution. The relation between peak current and analyte concentration was linear over about three orders of magnitude with detection limits (S/N = 3) ranging from 1 to 2 μM for all analytes. The proposed method has been successfully applied to monitor the mannitol and sugar contents in the plant samples at different growth stages with satisfactory assay results.  相似文献   

5.
The development of a rapid method for the determination of perchlorate in rain and drinking waters is presented. In the optimised method, an on-line preconcentration technique was employed utilising a 10 mm × 4.6 mm Phenomenex Onyx monolithic guard cartridge coated with (N-dodecyl-N,N-dimethylammonio)undecanoate for selective preconcentration, with subsequent elution into a fixed volume injection loop (‘heart-cut’ of the concentrator column eluate) and separation using an IonPac AS16 (250 mm × 2 mm) anion exchange column and a potassium hydroxide concentration gradient. Off-line optimisation studies showed that the coated monolith displayed near quantitative recovery up to 50 μg/L perchlorate level from standards prepared in reagent water. On-line preconcentration of perchlorate obtained detection limits down to 56 ng/L in reagent water, between 70 and 80 ng/L in rainwater samples and 2.5 μg/L in non-pretreated drinking water. After an additional sample sulphate/carbonate removal step, low ng/L perchlorate concentrations could also be observed in drinking water. The complete on-line method exhibited reproducibility for n = 10 replicate runs of R.S.D. ≤ 3% for peak height/area and R.S.D. = 0.08% for retention time. The optimised method, of 20 min total duration, was applied to the determination of perchlorate by standard addition in 10 rainwater samples and one drinking water sample. Concentrations of perchlorate present ranged from below the detection limit for four rainwater samples, with another three samples showing perchlorate present at between 70 and 100 ng/L, and one sample showing perchlorate present at 2.8 μg/L. Levels of 1.1 μg/L in the drinking water sample were also recorded.  相似文献   

6.
In this work, a novel polymer-based monolithic column was prepared using an o-phthalaldehyde-l-phenylalanine Schiff base complex as the reactive center and a mixture of methanol and n-propanol as the porogen. The monolithic column was employed for the separation of a metal ion mixture including Pb(II), Mn(II), Cu(II), Ni(II), Cr(III), Fe(III) and Cr(VI). Tetrabutylammonium bromide (TBAB) was used as a mobile phase additive to enhance the separation efficiency of metal ions by EDTA precomplexation. Using a phosphate buffer (20 mM, pH 3.0), TBAB (10 mM), MeOH (15%, v/v), an applied voltage of −15 kV, and detection at 220 nm, the metal ion mixture was satisfactorily resolved. The average theoretical plate number was 17,900 plates/m. The separation was also carried out in the absence of TBAB, leading to dissimilar elution order and shorter retention time. The separation behavior of the monolithic column was also compared with that of the blank polymer. The unique properties of the monolithic column might be mediated by a combination of electrophoretic behavior and chromatographic retention involving hydrophobic and hydrophilic interactions, as well as ligand exchange.  相似文献   

7.
Liu AL  He FY  Hu YL  Xia XH 《Talanta》2006,68(4):1303-1308
Rapid separation and determination of acetaminophen and its hydrolysate with end-channel electrochemical (EC) detection integrated on a plastified poly(ethylene terephthalate) (PET)-toner microchip capillary electrophoresis (CE) system was investigated. In this separation and detection system, a Pt ultramicroelectrode integrated on a three-dimensional adjustor was used as working electrode. Factors influencing the separation and detection were investigated and optimized. Results show that acetaminophen and p-aminophenol can be well separated within 84 s with R.S.D. < 1% for migration time and R.S.D. < 3.6% for detection current for both analytes. Detection limits for both analytes are determined to be 5.0 μM (S/N = 3). This method has been successfully applied to the detection of trace p-aminophenol in paracetamol tablets. The results demonstrate that the PET-toner microchips can obtain better performance than PDMS microfluidic devices but at much lower cost.  相似文献   

8.
A simple, fast and relatively inexpensive spectrophotometric method for the identification and the quantification of the individual components of the Italian general denaturant in alcohol samples is proposed.In particular, it is shown that bitrex (a quaternary ammonium salt), whose UV spectrum is completely masked by those of the other denaturant components, can be identified using its reaction with disulphine blue VN-150 (an anionic dye indicator), which leads to the formation of an intensely colored ion-association complex (mole ratio 1:1), easily extractable in chloroform. As far as the quantitative detection is involved, it is however necessary to shake the chloroform phase in the presence of 1 mol L−1 NaClO4 aqueous solution because of the fast adsorption of the ion pair on the walls of the glass cell. Perchlorate anion, due to mass action, substitutes the anionic dye indicator in the association complex: as a consequence, disulphine blue passes to the aqueous phase, where its absorbance at λ = 640 nm is measured. On the other hand, C.I. Reactive Red 24 dye is easily identifiable from the visible spectrum of the product without any further pretreatment: its concentration can be determined measuring the absorbance at λ = 542 nm. Thiophene, being significantly more concentrated than the other components, can be identified from the UV spectrum of a 1:100 diluted solution of the alcohol sample and quantitatively determined measuring the absorbance at λ = 230 nm. Lastly, methyl ethyl ketone (MEK) can be identified from the UV spectrum of a 1:5 diluted solution of the alcohol sample and quantitatively determined measuring the absorbance at λ = 273 nm. However, more accurate results can be obtained using a multiwavelength analysis in the range 220-250 and 250-310 nm for the determination of thiophene and MEK, respectively.Validation on standard denatured alcohol samples has proven the method to be both accurate and sufficiently precise (within- and between-days repeatability <5%) to be applied to the analysis of real commercial samples.  相似文献   

9.
In this study, a new capillary electrophoresis (CE) method is described originally for the sensitive and selective determination of short-chain aliphatic amines in biological samples. These amines were converted into their N-hydroxysuccinimidyl fluorescein-O-acetate (SIFA) derivatives and measured by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. The derivatization conditions and separation parameters for the aliphatic amines were optimized in detail. The SIFA-labeled amines were fully separated within 8.5 min using 25 mM pH 9.6 boric acid electrolyte containing 60 mM sodium dodecyl sulfate (SDS). The parameters of validation such as linearity of response, precision and detection limits were determined. The detection limits were obtained in the range from 0.02 to 0.1 nM, which was the lowest value reported by CE methods. The developed method was successfully employed to monitor aliphatic amines in serum and cells samples. After comparison of other CE methods using different fluorescent probes, the present method represents a powerful tool for the trace determination of aliphatic amines in complex biological samples.  相似文献   

10.
The aim of the present work is combination of the advantages of magnetic solid phase extraction (MSPE) and dispersive liquid phase microextraction (DLLME) followed by filtration-based phase separation. A new pretreatment method was developed for trace determination of megestrol acetate and levonorgestrel by liquid chromatography/ultraviolet detection in biological and wastewater samples. After magnetic solid phase extraction, the eluent of MSPE was used as the disperser solvent for DLLME. Emulsion resulted from DLLME procedure was passed through the in-line filter for phase separation. Finally the retained analytes in the filter was washed with mobile phase of liquid chromatography and transferred to the column for separation. This approach offers the preconcentration factors of 3680 and 3750 for megestrol acetate and levonorgestrel, respectively. This guarantees determination of the organic compounds at trace levels. The important parameters influencing the extraction efficiency were studied and optimized. Under the optimal extraction conditions, a linear range of 0.05–50 ng mL−1 (R2 > 0.998) and limit of detection of 0.03 ng mL−1 were obtained for megestrol acetate and levonorgestrel. Under optimal conditions, the method was successfully applied for determination of target analytes in urine and wastewater samples and satisfactory results were obtained (RSDs < 6.8%).  相似文献   

11.
An integrated gas chromatographic system has been successfully developed and implemented for the measurement of oxygen, nitrogen, carbon monoxide, carbon dioxide and light hydrocarbons in one single analysis. These analytes are frequently encountered in critical industrial petrochemical and chemical processes like catalytic cracking of naphtha or diesel fuel to lighter components used in gasoline. The system employs a practical, effective configuration consisting of two three-port planar microfluidic devices in series with each other, having built-in fluidic gates, and a mid-point pressure source. The use of planar microfluidic devices offers intangible advantages like in-oven switching with no mechanical moving parts, an inert sample flow path, and a leak-free operation even with multiple thermal cycles. In this way, necessary features such as selectivity enhancement, column isolation, column back-flushing, and improved system cleanliness were realized. Porous layer open tubular capillary columns were employed for the separation of hydrocarbons followed by flame ionization detection. After separation has occurred, carbon monoxide and carbon dioxide were converted to methane with the use of a nickel-based methanizer for detection with flame ionization. Flow modulated thermal conductivity detection was employed to measure oxygen and nitrogen. Separation of all the target analytes was achieved in one single analysis of less than 12 min. Reproducibility of retention times for all compounds were found to be less than 0.1% (n = 20). Reproducibility of area counts at two levels, namely 100 ppmv and 1000 ppmv over a period of two days were found to be less than 5.5% (n = 20). Oxygen and nitrogen were found to be linear over a range from 20 ppmv to 10,000 ppmv with correlation coefficients of at least 0.998 and detection limits of less than 10 ppmv. Hydrocarbons of interest were found to be linear over a range from 200 ppbv to 1000 ppmv with correlation coefficients of greater than 0.999 and detection limits of less than 100 ppbv.  相似文献   

12.
The enantiomeric fractions present in soil samples may provide information useful in distinguishing recent inputs of DDT from past DDT pollution. In this study, a chromatographic procedure for the determination of the enantiomeric fractions of o,p′-DDT based on heart-cutting multidimensional gas chromatography was developed. The optimization carried out achieved low ratios of DDT degradation (<15%) in the chromatographic system. High selectivity and sensitivity in the detection of the target compounds, with a limit of detection as low as 2.1 pg μL−1, was reached. In addition, high degrees of repeatability (RSD < 2.0%) and reproducibility (RSD < 3.2%) were obtained for the enantiomeric fractions measured in analytical standards and soil samples.  相似文献   

13.
The radium-226 (t1/2 = 1622 years) content of highly alkaline well water collected from the United Arab Emirates (UAE) was measured by double focusing sector-field inductively coupled plasma-mass spectrometry (SF-ICP-MS) after separation of the radium from other alkaline earth elements using a newly developed procedure. The results were comparable with those obtained by α-spectrometry for samples with concentrations ranging from 6.75 to 459 pg/L (0.25 to 17 Bq/L). Instrumental sensitivity on matrix-free samples was compared for two sample introduction systems, i.e. an Apex-Q high sensitivity system and a concentric nebulizer. A 12-fold improvement in sensitivity (instrumental detection limit = 1.5 pg/L or 55 mBq/L) was found when the Apex-Q system was used. Two chromatographic methods were tested for the sequential separation of the alkaline earth elements contained in the well water samples in order to reduce matrix and polyatomic interference effects. Optimal elution parameters were determined and used for the separation and pre-concentration of Ra-226 in those samples. A method detection limit of 0.189 pg/L (7 mBq/L), which corresponds to a mass of 0.38 fg of Ra-226 in the sample, was achieved. Only 2 mL of sample is necessary when a combination of 50 W-X8 and Sr*Spec resin, which are reusable, are utilized for the separation. This new analytical protocol significantly reduces sample preparation time resulting in a throughput rate of approximately 20 samples in only 8 h; faster than the other published extraction procedures.  相似文献   

14.
A new methodology for the detection and isolation of serine proteases in complex mixtures has been developed. It combines the characterization of crude samples by electrospray tandem mass spectrometry (ESI-MS/MS) in a multi-substrate assay and the differentiated sensitive detection of the responsible enzymes by means of liquid chromatography hyphenated online to biochemical detection (BCD). First, active samples are identified in the multi-substrate assay monitoring the conversion of eight substrates in multiple reaction monitoring in parallel within 60 s. Hereby, the product patterns are investigated and the suitable peptide as substrate for BCD analysis is selected. Subsequently, the active proteases are identified online in the continuous-flow reactor serving as BCD after non-denaturing separation by size-exclusion chromatography and ion-exchange chromatography. For BCD, the selected para-nitroaniline (pNA) labeled peptide is added post-column and is cleaved by eluting proteases under release of the coloured pNA in a reaction coil (reaction time 5 min). The method was optimized and the figures of merit were characterized with trypsin and chymotrypsin serving as the model proteases. For trypsin, a limit of detection in LC–BCD of 0.1 U/mL corresponding to an injected amount of 0.4 ng protein (∼18 fmol) was observed. The BCD signal remained linear for an injected enzyme concentration of 0.3–10 U/mL (1.3–42 ng enzyme). The method was applied to the characterization of the crude venom of the pit viper Bothrops moojeni and the extracellular protease of the pathogenic amoeba Acanthamoeba castellanii. In the two samples, fractions with proteolytic activity potentially interfering with the blood coagulation cascade were identified. The described methodology represents a tool for serine protease screening in complex mixtures by a fast ESI-MS/MS identification of active samples followed by the separation and isolation of active sample constituents in LC–BCD.  相似文献   

15.
A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL−1 and 13 CFU mL−1 respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL−1 and 25 CFU mL−1, respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices.  相似文献   

16.
A simple method to identify and determine six sulfonamides (sodium sulfacetamide, sulfamethizole, sulfaguanidine, sulfamerazine, sulfathiazole and sulfamethoxazole) in milk by micellar liquid chromatography (MLC) is reported. The assay makes use of a precolumn diazotisation-coupling derivatisation including the formation of an azo dye that can be detected at 490 nm. Furthermore, the use of MLC as an analytical tool allows the direct injection of non-purified samples. The separation was performed with an 80 mM SDS-8.5% propanol eluent at pH 7. Analysis times are below 16 min with a complete resolution. Linearities (r > 0.9999), as well as intra- and inter-day precision (below 2.7%), were studied in the validation of the method. The limits of detection and quantification ranged from approximately 0.72 to 0.94 and 2.4 to 3.1 ng mL−1, respectively. The detection limit was below the maximum residue limit established by the European Community. Finally, recoveries in spiked milk samples were in the 83-103% range.  相似文献   

17.
We report on the first separation of a complex biomixture in pressure-driven mode using perfectly ordered pillar array columns. The separations were conducted in the reversed-phase mode using a highly aqueous mobile phase, while the outer surface of the non-porous pillars was chemically functionalized with a hydrophobic C8-layer. The samples originated from two different bacterial strains (Pseudomonas aeruginosa PAO1 and Pseudomonas sp. W15Feb38) of fluorescent pseudomonads. These produce fluorescent yellow-green pyoverdines that serve as siderophores to shuttle iron inside the cell. The pyoverdines of both strains were prepared from the supernatant through a crude solid phase extraction without any further purification step. In case of the PAO1 mixture, a separation of 15 components within a column length of 2.5 cm could be observed through the transparent cover glass of the chip. For the W15Feb38 mixture, a separation of eight components could be observed within the same distance. These fast chromatographic separations were compared with those obtained via iso-electrofocusing (IEF), which is the traditionally employed fingerprinting method to characterize pseudomonad strains based on their pyoverdine profiles (siderotyping). With this technique, and despite the injection of a 10,000 times larger sample mass, only nine bands were maximally observed for the PAO1 mixture, whereas maximally six bands were observed in case of the W15Feb38 mixture. The chromatographic pillar array method, yielding a separation in less than 1 min, was also significantly faster than the IEF method, which typically needs 1.5 h. The present system can therefore be considered as a potential alternative fingerprinting tool for the fast identification of different strains of fluorescent pseudomonads, including as diagnostic tool for typing strains of the important opportunistic pathogen P. aeruginosa.  相似文献   

18.
A novel capillary electrophoresis (CE) approach has been developed for the simultaneous rapid separation and identification of common environmental inorganic anions and cations from a single sample injection. The method utilised a sequential injection-capillary electrophoresis instrument (SI-CE) with capacitively-coupled contactless conductivity detection (C4D) constructed in-house from commercial-off-the-shelf components. Oppositely charged analytes from a single sample plug were simultaneously injected electrokinetically onto two separate capillaries for independent separation and detection. Injection was automated and may occur from a syringe or be directly coupled to an external source in a continuous manner. Software control enabled high sample throughput (17 runs per hour for the target analyte set) and the inclusion of an isolation valve allowed the separation capillaries to be flushed, increasing throughput by removing slow migrating species as well as improving repeatability. Various environmental and industrial samples (subjected only to filtering) were analysed in the laboratory with a 3 min analysis time which allowed the separation of 23 inorganic and small organic anions and cations. Finally, the system was applied to an extended automated analysis of Hobart Southern Water tap water for a period of 48 h. The overall repeatability of the migration times of a 14 analyte standard sample was less than 0.74% under laboratory conditions. LODs ranged from 5 to 61 μg L−1. The combination of automation, high confidence of peak identification, and low limits of detection make this a useful system for the simultaneous identification of a range of common inorganic anions and cations for discrete or continuous monitoring applications.  相似文献   

19.
A quartz crystal microbalance sensor (QCM) was developed for sensitive and specific detection of Salmonella enterica serovar typhimurium cells in food samples by integrating a magnetic bead purification system. Although many sensor formats based on bioaffinity agents have been developed for sensitive and specific detection of bacterial cells, the development of robust sensor applications for food samples remained a challenging issue. A viable strategy would be to integrate QCM to a pre-purification system. Here, we report a novel and sensitive high throughput strategy which combines an aptamer-based magnetic separation system for rapid enrichment of target pathogens and a QCM analysis for specific and real-time monitoring. As a proof-of-concept study, the integration of Salmonella binding aptamer immobilized magnetic beads to the aptamer-based QCM system was reported in order to develop a method for selective detection of Salmonella. Since our magnetic separation system can efficiently capture cells in a relatively short processing time (less than 10 min), feeding captured bacteria to a QCM flow cell system showed specific detection of Salmonella cells at 100 CFU mL−1 from model food sample (i.e., milk). Subsequent treatment of the QCM crystal surface with NaOH solution regenerated the aptamer-sensor allowing each crystal to be used several times.  相似文献   

20.
In this work, a method based on capillary electrophoresis with amperometric detection and far infrared-assisted extraction has been developed for the determination of rutin, gentisic acid, and quercetin in the leaves of Lycium barbarum Linn. The effects of detection potential, irradiation time, and the voltage applied on the infrared generator were investigated to acquire the optimum analysis conditions. The detection electrode was a 300-μm-diameter carbon disc electrode at a detection potential of +0.90 V. The three analytes could be well separated within 12 min in a 40 cm length fused-silica capillary at a separation voltage of 12 kV in a 50 mM borate buffer (pH 9.2). The relation between peak current and analyte concentration was linear over about 3 orders of magnitude with the detection limits (S/N = 3) of 0.31, 0.48, and 0.78 μM for rutin, gentisic acid, and quercetin, respectively. The proposed method has been applied to determine the three bioactive constituents in real plant samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号