首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paraquat bis(hexafluorophosphate) undergoes stepwise dissociation in acetone. All three species—the neutral molecule, and the mono‐ and dications—are represented significantly under the experimental conditions typically used in host–guest binding studies. Paraquat forms at least four host–guest complexes with dibenzo[24]crown‐8. They are characterized by both 1:1 and 1:2 stoichiometries, and an overall charge of either zero (neutral molecule) or one (monocation). The monocationic 1:1 host–guest complex is the most abundant species under typical (0.5–20 mM ) experimental conditions. The presence of the dicationic 1:1 host–guest complex cannot be excluded on the basis of our experimental data, but neither is it unambiguously confirmed to be present. The two confirmed forms of paraquat that do undergo complexation—the neutral molecule and the monocation—exhibit approximately identical binding affinities toward dibenzo[24]crown‐8. Thus, the relative abundance of neutral, singly, and doubly charged pseudorotaxanes is identical to the relative abundance of neutral, singly, and doubly charged paraquat unbound with respect to the crown ether in acetone. In the specific case of paraquat/dibenzo[24]crown‐8, ion‐pairing does not contribute to host–guest complex formation, as has been suggested previously in the literature.  相似文献   

2.
Herein, we study the microstructuring of toluene‐vapor‐softened polystyrene surfaces with nonsolvent sessile droplets. Arrays of microvessels are obtained by depositing non‐evaporating droplets of ethylene glycol/water on the original polystyrene surfaces and subsequently exposing them to saturated toluene vapor. The droplets act as a mask on the polymer, thereby impeding the toluene vapor to diffuse and soften the polystyrene surface below them. Alternatively, the formation of microcraters at random positions—with an average depth‐to‐width aspect ratio of 0.5 and a diameter as small as 1.5 μm—is achieved by condensing water droplets on a softened polystyrene surface. The cross‐sections of the microvessels and the contact angle of the sessile water droplets suggest that the structures are formed by the combined action of the Laplace pressure at the bottom of the droplet and the surface tension acting at the three‐phase contact line of the droplets. As a support, the rim height and the depth of the microvessels are fitted with an elastic theory to provide Young’s modulus of the softened polystyrene surface.  相似文献   

3.
The shape of micro‐droplets of water on a pure copper surface was investigated using the a.c. non‐contact mode of an atomic force microscope (AFM) by applying different attractive forces between the cantilever tip and the liquid surface. The forces largely influenced the observed radii of micro‐droplets; the influence can be reduced significantly by reducing the force. The same attractive force between the cantilever tip and the micro‐droplets is necessary when comparing the contact angles of micro‐droplets on different surfaces. Furthermore, the values of the contact angles of the micro‐droplets should be the average of those on at least four sides of the droplets. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we report an immunoassay in which probe proteins are immobilized on the surface of liquid crystal (LC) droplets rather than on solid surfaces. The advantage of this immunoassay is that the binding of antibodies to the probe proteins can be transduced by the LC droplets directly without the need for additional steps. For example, when we incubate the LC droplets decorated with immunoglobulin G (IgG) in a solution containing anti-IgG (AIgG), these droplets change their orientations from radial to bipolar configuration. In contrast, when we incubate the IgG-LC droplets in a solution containing anti-human serum albumin (AHSA), no changes are observed. The change of orientational configuration indicates the formation of the antigen-antibody immunocomplex on the surface of the LC droplets. Using LC droplet immunoassays, we successfully detect antibody concentrations as low as 0.01 μg/mL for AIgG and 0.02 μg/mL for AHSA. Because the immunoassay using LC droplets is label-free and gives a unique optical response, it has the potential to be further developed as a portable and low-cost immunoassay.  相似文献   

5.
Supramolecular assembly of proteins on surfaces and vesicles was investigated by site‐selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site‐selectively labeled with bisadamantane by SNAP‐tag technology. The assembly of the bisadamantane functionalized SNAP‐fusion proteins on cyclodextrin‐coated surfaces yielded stable monolayers. The binding of the fusion proteins is specific and occurs with an affinity in the order of 106 M ?1 as determined by surface plasmon resonance. Reversible micropatterns of the fusion proteins on micropatterned cyclodextrin surfaces were visualized by using fluorescence microscopy. Furthermore, the guest‐functionalized proteins could be assembled out of solution specifically onto the surface of cyclodextrin vesicles. The SNAP‐tag labeling of proteins thus allows for assembly of modified proteins through a host–guest interaction on different surfaces. This provides a new strategy in fabricating protein patterns on surfaces and takes advantage of the high labeling efficiency of the SNAP‐tag with designed supramolecular elements.  相似文献   

6.
Charged liquid droplets are typically generated by a high‐voltage power supply. Herein, a previously unreported method is used for charging liquid droplets: by transferring charge from an insulating solid surface charged by contact electrification to the droplets. Charging the solid surface by contact electrification involves bringing it into contact with another solid surface for generating static charge. Subsequently, water droplets that flow across the surface are found to be charged—thus, the charge is readily transferred from solid to liquid. The charge of the droplets can be tuned continuously from positive to negative by varying the way the solid surface is charged. The amount of charge generated is sufficient for manipulating, coalescing, and sorting the water droplets by solid surfaces charged by contact electrification. This method of generating charged droplets is general, simple, inexpensive, and does not need any additional equipment or power supply.  相似文献   

7.
Separation of micro‐scaled water‐in‐oil droplets is important in environmental protection, bioassays, and saving functional inks. So far, bulk oil–water separation has been achieved by membrane separation and sponge absorption, but micro‐drop separation still remains a challenge. Herein we report that instead of the “plug‐and‐go” separation model, tiny water‐in‐oil droplets can be separated into pure water and oil droplets through “go‐in‐opposite ways” on curved peristome‐mimetic surfaces, in milliseconds, without energy input. More importantly, this overflow controlled method can be applied to handle oil‐in‐oil droplets with surface tension differences as low as 14.7 mN m−1 and viscous liquids with viscosities as high as hundreds centipoises, which markedly increases the range of applicable liquids for micro‐scaled separation. Furthermore, the curved peristome‐mimetic surface guides the separated drops in different directions with high efficiency.  相似文献   

8.
We report a rapid and highly sensitive trace analysis of paraquat (PQ) in water using a surface-enhanced Raman scattering (SERS)-based microdroplet sensor. Aqueous samples of PQ, silver nanoparticles, and NaCl as the aggregation agent were introduced into a microfluidic channel and were encapsulated by a continuous oil phase to form a microdroplet. PQ molecules were adsorbed onto particle surfaces in isolated droplets by passing through the winding part of the channel. Memory effects, caused by the precipitation of nanoparticle aggregates on channel walls, were removed because the aqueous droplets were completely isolated by a continuous oil phase. The limit of detection (LOD) of PQ in water, determined by the SERS-based microdroplet sensor, was estimated to be below 2×10(-9) M, and this low detection limit was enhanced by one to two orders of magnitude compared to conventional analytical methods.  相似文献   

9.
Inclusion complexes of cyclobis(paraquat‐p‐phenylene) and various aromatic molecules in their neutral and oxidized form were studied at the LMP2/6‐311+G**//BHandHLYP/6‐31G* level of theory, which represents the highest level theoretical study to date for these complexes. The results show that it is dispersion interaction that contributes most to the binding energy. One electron oxidation of a guest molecule leads to complete dissociation of inclusion complex generating strong repulsion potential between guest and host molecules. Electrostatic interactions also can play an important role, provided the guest molecule has a dipole moment; however, dispersion interactions always dominate in binding energy. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

10.
Collective behaviour in mixed populations of synthetic protocells is an unexplored area of bottom‐up synthetic biology. The dynamics of a model protocell community is exploited to modulate the function and higher‐order behaviour of mixed populations of bioinorganic protocells in response to a process of artificial phagocytosis. Enzyme‐loaded silica colloidosomes are spontaneously engulfed by magnetic Pickering emulsion (MPE) droplets containing complementary enzyme substrates to initiate a range of processes within the host/guest protocells. Specifically, catalase, lipase, or alkaline phosphatase‐filled colloidosomes are used to trigger phagocytosis‐induced buoyancy, membrane reconstruction, or hydrogelation, respectively, within the MPE droplets. The results highlight the potential for exploiting surface‐contact interactions between different membrane‐bounded droplets to transfer and co‐locate discrete chemical packages (artificial organelles) in communities of synthetic protocells.  相似文献   

11.
The mutual influence of two moderate-sized droplets of a dilute nonvolatile substance solution on the processes of their evaporation or condensation is theoretically analyzed under the assumption of a uniform concentration distribution inside the droplets. The conditions for the applicability of this approach are revealed. The evaporation or condensation of a droplet near a flat liquid surface is considered as a limiting case. The fluxes of water molecules to and from the surface of aqueous glycerol solution droplets occurring in air are numerically estimated depending on the droplet radii, distances between their surfaces, and air humidity. Analogous estimates are obtained for an aqueous glycerol solution droplet growing near a flat water surface.  相似文献   

12.
Molecular dynamics simulations were performed to study the behavior of nanoscale water droplets at solid surfaces. Simulations of droplets on heterogeneous patterned surfaces show that the relative sizes of the domains and the droplets play an important role as do the interactions between the solid and the liquid, particularly when the domain width is comparable to the droplet radius. For pillar surfaces, a transition is observed between the Wenzel and the Cassie and Baxter regimes with increasing pillar height. The effects of pillar width and the gap between the pillars were also examined. The simulations show clearly the importance of the detailed topography and composition of the solid surface.  相似文献   

13.
Controlled directional spreading of a droplet on a smart high‐adhesion surface was made possible by simply controlling anodic oxidation. The wettability gradient of the surface was controlled from 0.14 to 3.38° mm?1 by adjusting the anodic oxidation conditions. When a water droplet made contact with the substrate, the droplet immediately spread in the direction of the wettability gradient but did not move in other directions, such as those perpendicular to the gradient direction, even when the surface was turned upside down. The spreading behavior was mainly controlled by the wettability gradient. Surfaces with a V‐ or inverse‐V‐shaped wettability gradient were also formed by the same method, and two droplets on these surfaces spread either toward or away from one another as designed. This method could be used to oxidize many conductive substrates (e.g., copper, aluminum) to form surfaces with variously shaped wettability gradients. It has potential for application in microfluidic devices.  相似文献   

14.
Rotaxane‐type hyperbranched polymers are synthesized for the first time from A2B type semi‐rotaxane monomers formed in situ via complexation of bis(m‐phenylene)‐32‐crown‐10 dimethanol ( 1 ) and two paraquat ωn‐alkylenecarboxylic acid derivatives with tris(p‐t‐butylphenyl)methylphenylalkylene stoppers ( 8 and 9) . Rotaxane and taco complexes exist in solutions of the hyperbranched polyesters in CD3CN/CDCl3 as confirmed by NMR spectroscopy, but the taco complexes, which derive from non‐rotaxanated paraquat units, disappear in DMSO‐d6. NMR spectroscopy indicates the portion of rotaxanes strongly interlocked by the environment (inner rotaxanes) is larger in HP1?9 , which has longer alkylene spacers, perhaps indicating a higher degree of polymerization. The molecular size increases upon formation of the hyperbranched polymers are confirmed by dynamic light scattering and by viscometry. As with covalent hyperbranched polymers a number of potential applications exist; the unique mechanically linked character and the presence of uncomplexed host and guest moieties foreshadow the use of such systems for their responses to external stimuli with the added benefit of providing molecular recognition sites useful as delivery vehicles. Use of other host‐guest motifs to form the semirotaxane A2B monomers is possible and complementary systems with higher binding constants will enable efficient syntheses of high molecular weight, mechanically linked hyperbranched polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1647–1658  相似文献   

15.
Among non-covalent bonds, the host-guest interaction is an attractive way to attach biomolecules to solid surfaces since the binding strength can be tuned by the nature of host and guest partners or through the valency of the interaction. For that purpose, we synthesized cyclodecapeptide scaffolds exhibiting in a spatially controlled manner two independent domains enabling the multimeric presentation of guest molecules on one face and the other face enabling the potential grafting of a biomolecule of interest. In this work, we were interested in the β-cyclodextrin/ferrocene inclusion complex formed on β-CD monolayers functionalized surfaces. By using surface sensitive techniques such as quartz crystal microbalance and surface plasmon resonance, we quantified the influence of the guest valency on the stability of the inclusion complexes. The results show a drastic enhancement of the affinity with the gradual increase of guest valency. Considering that the sequential binding events are equal and independent, we applied the multivalent model developed by the Huskens group to extract intrinsic binding constants and an effective concentration of host.  相似文献   

16.
The first paraquat-based [3](taco complex) was successfully prepared from a linear bis(crown ether) host and paraquat as shown by proton NMR characterization and X-ray analysis. It has a dumbbell shape in the solid state. The two crown ether binding sites are independent of each other during their complexation in solution.  相似文献   

17.
The triptycene-based macrotricyclic host containing two dibenzo-[24]-crown-8 moieties has been found to form stable 1:1 or 1:2 complexes in different complexation modes with different functional paraquat derivatives and secondary ammonium salts in solution and in the solid state. Consequently, the alkyl-substituted paraquat derivatives thread the lateral crown cavities of the host to form 1:1 complexes. It was interestingly found that the paraquat derivatives containing two beta-hydroxyethyl or gamma-hydroxypropyl groups form 1:2 complexes, in which two guests thread the central cavity of the host. Other paraquat derivatives containing terminal hydroxy, methoxy, 9-anthracylmethyl, and amide groups were included in the cavity of the host to form 1:1 complexes. Moreover, the host also forms a 1:2 complex with two 9-anthracylmethylbenzylammonium salts, in which the 9-anthracyl groups were selectively positioned outside the lateral crown cavities. The competition complexation process between the host and two different guests (the propyl-substituted paraquat derivative and a dibenzylammonium salt) could be chemically controlled.  相似文献   

18.
Dispensing uniform pico‐to‐nanoliter droplets has become one of essential components in various application fields from high‐throughput bio‐analysis to printing. In this study, a new method is suggested and demonstrated for dispensing a droplet on the top plate with an inverted geometry by using electric field. The process of dispensing droplets consists of two stages: (i) formation of liquid bridge by moving up the charged fluid mass using the electrostatic force between the charges on the fluid mass and the induced charges on the substrate and (ii) its break‐up by the motion of the top plate. Different from conventional electrohydrodynamic methods, electric induction enables the droplets to be dispensed on various surfaces including non‐conducting substrate. The use of capillarity with an inverted geometry removes the need of external pumps or elaborates control for constant flow feed. The droplet diameter has been characterized as a function of the nozzle‐to‐plate distance and the plate moving velocity. The robustness of the present method is shown in terms of nozzle length and applied voltage. Finally, its practical applicability is confirmed by rendering a 19 by 24 array of highly uniform droplets with only 1.8% size variation without use of any active feedback control.  相似文献   

19.
Self‐cleaning surface is potentially a very useful addition for many commercial products due to economic, aesthetic, and environmental reasons. Super‐hydrophobic self‐cleaning, also called Lotus effect, utilizes right combination of surface chemistry and roughness to force water droplets to form high contact angle on a surface, easily roll off a surface and pick up dirt particles on its way. Electrospinning is a promising technique for creation of superhydrophobic self‐cleaning surfaces owing to a wide set of parameters that allow effectively controlling roughness of resulted webs. This article gives a brief introduction to the theory of super‐hydrophobic self‐cleaning and basic principles of the electrospinning process and reviews the scientific literature where electrospinning was used to create superhydrophobic surfaces. The article reviewed are categorized into several groups and their results are compared in terms of superhydrophobic properties. Several issues with current state of the art and highlights of important areas for future research are discussed in the conclusion. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

20.
Stain patterns formed by drying up of droplets of polymer latex dispersion on hydrophilic and hydrophobic surfaces were examined in light of the mechanism of particle adsorption in evaporating droplets. On hydrophilic surfaces, the volume of droplets decreased with time, keeping the initial outline of contact area, and circular stain patterns were formed after the dry-up of droplets. By the microscopic observation of particles in the droplets, it was found that a large portion of the particles were forced to adsorb on the outline of the contact area where a microscopic thin water layer was formed because of hydrophilicity of the surface. On hydrophobic surfaces, on the other hand, the contact area of droplets decreased as evaporation proceeded, while no particle was adsorbed on the surface at the early stages. The particles in the droplets started to aggregate when the concentration of particles reached a critical value, and the aggregates adsorbed on the surface forming tiny spots after the dry-up. Time evolutions of contact angle, contact area and volume of the droplets were analyzed in light of differences in the adsorption mechanisms between hydrophilic and hydrophobic surfaces. Received: 14 January 1998 Accepted: 1 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号