首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

2.
A study of the strong N?X????O?N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). DFT calculations were used to investigate the X???O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X???O XBs. The XB interaction energies vary from ?47.5 to ?120.3 kJ mol?1; the strongest N?I????O?N+ XBs approaching those of 3‐center‐4‐electron [N?I?N]+ halogen‐bonded systems (ca. 160 kJ mol?1). 1H NMR association constants (KXB) determined in CDCl3 and [D6]acetone vary from 2.0×100 to >108 m ?1 and correlate well with the calculated donor×acceptor complexation enthalpies found between ?38.4 and ?77.5 kJ mol?1. In X‐ray crystal structures, the N‐iodosaccharin‐PyNO complexes manifest short interaction ratios (RXB) between 0.65–0.67 for the N?I????O?N+ halogen bond.  相似文献   

3.
The pairing of ions of opposite charge is a fundamental principle in chemistry, and is widely applied in synthesis and catalysis. In contrast, cation–cation association remains an elusive concept, lacking in supporting experimental evidence. While studying the structure and properties of 4‐oxopiperidinium salts [OC5H8NH2]X for a series of anions X? of decreasing basicity, we observed a gradual self‐association of the cations, concluding in the formation of an isolated dicationic pair. In 4‐oxopiperidinium bis(trifluoromethylsulfonyl)amide, the cations are linked by N? H???O?C hydrogen bonds to form chains, flanked by hydrogen bonds to the anions. In the tetra(perfluoro‐tert‐butoxy)aluminate salt, the anions are fully separated from the cations, and the cations associate pairwise by N? C? H???O?C hydrogen bonds. The compounds represent the first genuine examples of self‐association of simple organic cations based merely on hydrogen bonding as evidenced by X‐ray structure analysis, and provide a paradigm for an extension of this class of compounds.  相似文献   

4.
Cardiosulfa is a biologically active sulfonamide molecule that was recently shown to induce abnormal heart development in zebrafish embryos through activation of the aryl hydrocarbon receptor (AhR). The present report is a systematic study of solid‐state forms of cardiosulfa and its biologically active analogues that belong to the N‐(9‐ethyl‐9H‐carbazol‐3‐yl)benzene sulfonamide skeleton. Cardiosulfa (molecule 1 ; R1=NO2, R2=H, R3=CF3), molecule 2 (H, H, CF3), molecule 3 (CF3, H, H), molecule 4 (NO2, H, H), molecule 5 (H, CF3, H), and molecule 6 (H, H, H) were synthesized and subjected to a polymorph search and solid‐state form characterization by X‐ray diffraction, differential scanning calorimetry (DSC), variable‐temperature powder X‐ray diffraction (VT‐PXRD), FTIR, and solid‐state (ss) NMR spectroscopy. Molecule 1 was obtained in a single‐crystalline modification that is sustained by N? H???π and C? H???O interactions but devoid of strong intermolecular N? H???O hydrogen bonds. Molecule 2 displayed a N? H???O catemer C(4) chain in form I, whereas a second polymorph was characterized by PXRD. The dimorphs of molecule 3 contain N? H???π and C? H???O interactions but no N? H???O bonds. Molecule 4 is trimorphic with N? H???O catemer in form I, and N? H???π and C? H???O interactions in form II, and a third polymorph was characterized by PXRD. Both polymorphs of molecule 5 contain the N? H???O catemer C(4) chain, whereas the sulfonamide N? H???O dimer synthon R22(8) was observed in polymorphs of 6 . Differences in the strong and weak hydrogen‐bond motifs were correlated with the substituent groups, and the solubility and dissolution rates were correlated with the conformation in the crystal structure of 1 , 2 , 3 , 4 , 5 , 6 . Higher solubility compounds, such as 2 (10.5 mg mL?1) and 5 (4.4 mg mL?1), adopt a twisted confirmation, whereas less‐soluble 1 (0.9 mg mL?1) is nearly planar. This study provides practical guides for functional‐group modification of drug lead compounds for solubility optimization.  相似文献   

5.
In the crystal structure of the title di­amide, C6H6N4O2, linear tapes of carbox­amide N—H?O and pyrazine C—H?N hydrogen‐bond dimers are connected by N—H?O bonds to form a staircase‐like pattern.  相似文献   

6.
The C?H???Y (Y=hydrogen‐bond acceptor) interactions are somewhat unconventional in the context of hydrogen‐bonding interactions. Typical C?H stretching frequency shifts in the hydrogen‐bond donor C?H group are not only small, that is, of the order of a few tens of cm?1, but also bidirectional, that is, they can be red or blue shifted depending on the hydrogen‐bond acceptor. In this work we examine the C?H???N interaction in complexes of 7‐azaindole with CHCl3 and CHF3 that are prepared in the gas phase through supersonic jet expansion using the fluorescence depletion by infra‐red (FDIR) method. Although the hydrogen‐bond acceptor, 7‐azaindole, has multiple sites of interaction, it is found that the C?H???N hydrogen‐bonding interaction prevails over the others. The electronic excitation spectra suggest that both complexes are more stabilized in the S1 state than in the S0 state. The C?H stretching frequency is found to be red shifted by 82 cm?1 in the CHCl3 complex, which is the largest redshift reported so far in gas‐phase investigations of 1:1 haloform complexes with various substrates. In the CHF3 complex the observed C?H frequency is blue shifted by 4 cm?1. This is at variance with the frequency shifts that are predicted using several computational methods; these predict at best a redshift of 8.5 cm?1. This discrepancy is analogous to that reported for the pyridine‐CHF3 complex [W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A­ 2005 , 109, 3038], in which the blueshift is termed a pseudo blueshift and is shown to be due to the shifting of levels caused by Fermi resonance between the overtones of the C?H bending and stretching modes. The dissociation energies, (D0), of the CHCl3 and CHF3 complexes are computed (MP2/aug‐cc‐pVDZ level) as 6.46 and 5.06 kcal mol?1, respectively.  相似文献   

7.
The crystal structures of the four isomeric organic salts 4‐amino­pyridinium 2‐chloro‐4‐nitro­benzoate, (I), 4‐amino­pyridinium 2‐chloro‐5‐nitro­benzoate, (II), 4‐amino­pyridinium 5‐chloro‐2‐nitro­benzoate, (III), and 4‐amino­pyridinium 4‐chloro‐2‐nitro­benzoate, (IV), all C5H7N2+·C7H3ClNO4?, are presented. Compound (I) has one intramolecular hydrogen bond, one intermolecular C—H?O hydrogen bond and π–π‐stacking interactions. Compound (II) has N—H?O, C—H?O and C—H?Cl hydrogen bonds, and Cl?O—C electrostatic interactions. Compound (III) has N—H?O and C—H?O hydrogen bonds. Compound (IV) has a π–π‐stacking interaction, but no C—H?O hydrogen bonds.  相似文献   

8.
α‐Halogenoacetanilides (X=F, Cl, Br) were examined as H‐bonding organocatalysts designed for the double activation of C?O bonds through NH and CH donor groups. Depending on the halide substituents, the double H‐bond involved a nonconventional C?H???O interaction with either a H?CXn (n=1–2, X=Cl, Br) or a H?CAr bond (X=F), as shown in the solid‐state crystal structures and by molecular modeling. In addition, the catalytic properties of α‐halogenoacetanilides were evaluated in the ring‐opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α‐dichloro‐ and α‐dibromoacetanilides containing electron‐deficient aromatic groups afforded the most attractive double H‐bonding properties towards C?O bonds, with a N?H???O???H?CX2 interaction.  相似文献   

9.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

10.
A hydrogen bond of the type C?H???X (X=O or N) is known to influence the structure and function of chemical and biological systems in solution. C?H???O hydrogen bonding in solution has been extensively studied, both experimentally and computationally, whereas the equivalent thermodynamic parameters have not been enumerated experimentally for C?H???N hydrogen bonds. This is, in part, due to the lack of systems that exhibit persistent C?H???N hydrogen bonds in solution. Herein, a class of molecule based on a biologically active norharman motif that exhibits unsupported intermolecular C?H???N hydrogen bonds in solution has been described. A pairwise interaction leads to dimerisation to give bond strengths of about 7 kJ mol?1 per hydrogen bond, which is similar to chemically and biologically relevant C?H???O hydrogen bonding. The experimental data is supported by computational work, which provides additional insight into the hydrogen bonding by consideration of electrostatic and orbital interactions and allowed a comparison between calculated and extrapolated NMR chemical shifts.  相似文献   

11.
The structures of hydrogen‐bonded complexes A–Fn (n = 2–7) of adenine with polyformamide molecules have been fully optimized at B3LYP/6‐31G(d) basis set level. All the formamide molecules prefer to be N? H proton donor rather than C? H proton donor and are favorably bound to the five‐numbered moiety of adenine. A displacement of formamide molecules to one side of adenine mean plane has happened with an increasing number of formamide molecules. An obvious effect of hydrogen‐bonding cooperativity can be seen during the complex process. The most interesting geometrical change of adenine upon the complex is the shortening of the bond C4? N6 resulting from the strengthening of the conjugation between the π system of the adenine ring and the lone pair of the nitrogen atom. An existence of weak N? H···π bonding interaction between the π system of adenine and N? H bond of F7 is found and further conformed by an natural bond orbital analysis specially carried out on A–F7. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

12.
The title compound, C25H44N4O5, exhibits a turn with the main chain reversing direction, held together by an intramol­ecular N—H?O hydrogen bond. In the urea fragment, a notable amide C—N bond between the carboxyl C and the tertiary N atom shows marked single‐bond character [1.437 (2) Å]. The dihedral angle of the β‐alanyl residue, centrally located in the turn, is gauche [69.2 (2)°]. The packing is mediated by two intermolecular hydrogen bonds and van der Waals contacts involving the methyl moieties and the cyclo­hexyl rings.  相似文献   

13.
In the adduct ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–1,2‐bis(4‐pyridyl)­ethene (1/1), [Fe(C18H15O)2]·C12H10N2, there is an intramolecular O—H?O hydrogen bond in the ferro­cene­diol component and a single O—H?N hydrogen bond linking the diol to the di­amine, which is disordered over two sets of sites, so forming a finite monomeric adduct. In the adduct ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–1,6‐di­amino­hexane (2/1), 2[Fe(C18H15O)2]·C6H16N2, the amine lies across a centre of inversion in space group P. There is an intramolecular O—H?O hydrogen bond in the ferrocenediol, and the molecular components are linked by O—H?N and N—H?O hydrogen bonds, one of each type, into a C(13)[R(12)] chain of rings.  相似文献   

14.
Non‐biaryl atropisomers are valuable in medicine, materials, and catalysis, but their enantioselective synthesis remains a challenge. Herein, a counterion‐mediated O‐alkylation method for the generation of atropisomeric amides with an er up to 99:1 is outlined. This dynamic kinetic resolution is enabled by the observation that the rate of racemization of atropisomeric naphthamides is significantly increased by the presence of an intramolecular O?H???NCO hydrogen bond. Upon O‐alkylation of the H‐bond donor, the barrier to rotation is significantly increased. Quantum calculations demonstrate that the intramolecular H‐bond reduces the rotational barrier about the aryl–amide bond, stabilizing the planar transition state for racemization by approximately 40 kJ mol?1, thereby facilitating the observed dynamic kinetic resolution.  相似文献   

15.
4‐Fluorinated levoglucosans were synthesised to test if OH???F H‐bonds are feasible even when the O???F distance is increased. The fluorinated 1,6‐anhydro‐β‐D ‐glucopyranoses were synthesised from 1,6 : 3,4‐dianhydro‐β‐D ‐galactopyranose ( 8 ). Treatment of 8 with KHF2 and KF gave 43% of 4‐deoxy‐4‐fluorolevoglucosan ( 9 ), which was transformed into the 3‐O‐protected derivatives 13 by silylation and 15 by silylation, acetylation, and desilylation. 4‐Deoxy‐4‐methyllevoglucosan ( 19 ) and 4‐deoxylevoglucosan ( 21 ) were prepared as reference compounds that can only form a bivalent H‐bond from HO? C(2) to O? C(5). They were synthesised from the iPr3Si‐protected derivative of 8 . Intramolecular bifurcated H‐bonds from HO? C(2) to F? C(4) and O? C(5) of the 4‐fluorinated levoglucosans in CDCl3 solution are evidenced by the 1H‐NMR scalar couplings h1J(F,OH) and 3J(H,OH). The OH???F H‐bond over an O???F distance of ca. 3.0 Å is thus formed in apolar solvents, at least when favoured by the simultaneous formation of an OH???O H‐bond.  相似文献   

16.
The crystal structure of 1‐hydroxy‐2,4,5‐triphenyl‐1H‐imidazole 3‐oxide ( 1 ) has been determined from laboratory X‐ray powder‐diffraction data. The two independent molecules in the asymmetric unit form chains via O? H???O hydrogen bonds related by a twofold screw axis. One of the O???O distances is extremely short (2.32(1) and 2.43(1) Å). Solid‐state NMR spectroscopy (CPMAS) combined with calculation of absolute shieldings (GIAO/B3LYP/6‐31G*) allowed us to determine that the compound behaves as if the O? H???O hydrogen bond has the proton in the middle (single‐well potential), resulting in the near identity of both 15N‐NMR signals.  相似文献   

17.
The structure of the adduct of eucarvone with nitro­so­benzene, C16H19NO2, is reported. The [3.2.2] bicyclic system corresponds to two seven‐membered rings in boat and distorted chair conformations and a six‐membered ring that adopts a distorted boat conformation. No conjugation is observed between the phenyl group and the N—O system. The packing is directed mainly by a C?O hydrogen bond, C—H?O‐(1 ? x, ?y, z) and by intermolecular C—H?π interactions.  相似文献   

18.
19.
An analytic potential energy function is proposed and applied to evaluate the amide–amide and amide–water hydrogen‐bonding interaction energies in peptides. The parameters in the analytic function are derived from fitting to the potential energy curves of 10 hydrogen‐bonded training dimers. The analytic potential energy function is then employed to calculate the N? H…O?C, C? H…O?C, N? H…OH2, and C?O…HOH hydrogen‐bonding interaction energies in amide–amide and amide–water dimers containing N‐methylacetamide, acetamide, glycine dipeptide, alanine dipeptide, N‐methylformamide, N‐methylpropanamide, N‐ethylacetamide and/or water molecules. The potential energy curves of these systems are therefore obtained, including the equilibrium hydrogen bond distances R(O…H) and the hydrogen‐bonding energies. The function is also applied to calculate the binding energies in models of β‐sheets. The calculation results show that the potential energy curves obtained from the analytic function are in good agreement with those obtained from MP2/6‐31+G** calculations by including the BSSE correction, which demonstrate that the analytic function proposed in this work can be used to predict the hydrogen‐bonding interaction energies in peptides quickly and accurately. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

20.
All‐inorganic lead halide perovskites are promising candidates for optoelectronic applications. However, fundamental questions remain over the component interaction in the perovskite precursor solution due to the limitation of the most commonly used solvents of N,N‐dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Here, we report an interaction tailoring strategy for all‐inorganic CsPbI3?xBrx perovskites by involving the ionic liquid solvent methylammonium acetate (MAAc). C=O shows strong interaction with lead (Pb2+) and N?H???I hydrogen bond formation is observed. The interactions stabilize the perovskite precursor solution and allow production of the high‐quality perovskite films by retarding the crystallization. Without the necessity for antisolvent treatment, the one‐step air‐processing approach delivers photovoltaic cells regardless of humidity, with a high efficiency of 17.10 % along with long operation stability over 1500 h under continuous light illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号