首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.  相似文献   

2.
The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC8‐PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γeq) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γeq values were significantly lower (by up to 10 mN m?1) when PFH was present in the gas phase. The efficacy of PFH in decreasing γeq depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30 %) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface‐tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC8‐PC at the PFH‐saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface.  相似文献   

3.
The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ~30 ? thick, with a mean area per molecule of ~400 ?(2) and a volume fraction of ~0.7, for concentrations greater than 0.01 g/L, and the adsorption is independent of the solution pH. In competition with the conventional surfactants CTAB, SDS, and C(12)E(6) at pH 7, the HFBII adsorption totally dominates the surface for surfactant concentrations less than the critical micellar concentration, cmc. Above the cmc of the conventional surfactants, HFBII is displaced by the surfactant (CTAB, SDS, or C(12)E(6)). For C(12)E(6) this displacement is only partial, and some HFBII remains at the surface for concentrations greater than the C(12)E(6) cmc. At low pH (pH 3) the patterns of adsorption for HFBII/SDS and HFBII/C(12)E(6) are different. At concentrations just below the surfactant cmc there is now mixed HFBII/surfactant adsorption for both SDS and C(12)E(6). For the HFBII/SDS mixture the structure of the adsorbed layer is more complex in the region immediately below the SDS cmc, resulting from the HFBII/SDS complex formation at the interface.  相似文献   

4.
The hydrophobins are a class of amphiphilic proteins which spontaneously adsorb at the air/water interface and form elastic membranes of high mechanical strength as compared to other proteins. The mechanism of hydrophobin adhesion is of interest for fungal biology and for various applications in electronics, medicine, and food industry. We established that the drainage of free foam films formed from HFBII hydrophobin solutions ends with the appearance of a 6 nm thick film, which consists of two layers of protein molecules, that is, it is a self-assembled bilayer (S-bilayer), with hydrophilic domains pointing inward and hydrophobic domains pointing outward. Its formation is accompanied by a considerable energy gain, which is much greater than that typically observed with free liquid films. The experiments at different pH show that this attraction between the "hydrophilic" parts of the HFBII molecules is dominated by the short-range hydrophobic interaction rather than by the patch-charge electrostatic attraction.  相似文献   

5.
Wingkei Ho 《催化学报》2015,(12):2109-2118
由于人们80%的时间呆在室内,室内空气的质量直接影响人类健康,因此近年来室内空气质量越来越受到人们的关注.室内污染物包括CO氮氧化物(NOx)和挥发性有机化合物(VOCs),它们给人体健康带来众多负面影响.更为重要的是,考虑到节能,现代建筑的空气密闭性大都较高,但这种减少吸入新鲜空气的设计直接导致室内各种污染物的累积.有些家用电器,如燃气灶和热水器,在使用的时候会涉及到煤、油和天然气的燃烧,特别是通风较差的情况下会成为室内主要的污染源.常规的治理技术,包括吸附和过滤,其成本相对较高,也不适用于低浓度污染物的治理.尤其是更换不及时的过滤器在排风系统中可能会成为VOCs的一个来源.因此,很有必要开发一种新型的技术以降低室内污染物的浓度和保持一个清洁的室内空气环境,从而保障人们的身体健康.光催化是去除室内空气污染物的有效方法.例如, TiO2、钛酸铋和钛酸锶等具有强氧化能力和稳定的光催化活性,因而是高效的光催化剂.一般而言,通常报道的TiO2光催化剂是高度分散的、或悬浮于液体介质中的细小颗粒或粉末.然而,粉末状的TiO2光催化剂不适宜于室内空气净化,因为它变得可吸入而对人体健康造成不利的影响.因此,人们尝试将TiO2颗粒作为薄膜固定在不同的刚性载体上,如玻璃、不锈钢和铝合金板.对基体进行涂覆可显著影响光催化时反应物的表面吸附行为.一般而言,光催化薄膜通常涂覆在平面上,如蜂窝空气过滤器.三维(3D)多孔的陶瓷泡沫对气体通过具有非常好的流体性质,因此本文以它作为涂覆的基体.这种陶瓷泡沫具有3D多孔结构,多种孔密度、比表面积和化学性质.3D多孔陶瓷泡沫空气过滤器的床层空隙率较高,因此使用时压降较低,且不像蜂窝空气过滤器,它具有复杂多变的孔结构,可增强流体的扰动和混合.另外,3D多孔陶瓷泡沫空气过滤器的开发多孔和网状的结构使得在催化体系具有非常好的气体动力学性质,催化剂表面和气体反应物有充分的接触.多孔材料在液相或气相催化反应中具有独特的优势,因此,陶瓷泡沫、多孔的氧化铝、多孔硅胶.分子筛和活性炭经常被用作催化剂载体.在固体基体上TiO2膜的形成可能使得TiO2光催化剂的有效比表面积降低,从而导致其光催化活性下降.然而,由于具有中孔结构的TiO2薄膜的比表面积大,其用于催化反应的活性位也更多,因此使用时仍然具有较高的活性.前期研究表明,涂覆在平面玻璃、不锈钢和氧化铝基体上的中孔TiO2薄膜用于环境净化时表现出增强的光催化效率.另外,室内环境中NO和NO2的浓度一般分别为几百个ppb之内和100 ppb以下.可见, NO是主要的室内空气污染物,对人体健康危害较大.基于此,本文首次采用反胶束法将中孔锐钛矿TiO2薄膜均匀一地涂覆在3D多孔高比表面积的泡沫过滤器上,采用X射线衍射、扫描电镜、X射线光电子能谱、N2吸附-脱附、紫外-可见光光谱和原子力显微镜对所制样品进行了表征,并将样品用于紫外光下催化降解NO,以揭示所制的中孔TiO2涂层具有高的比表面积和高的光催化活性,从而克服使用TiO2粉末所带来的不足.结果表明,由于中孔TiO2薄膜涂层具有较大的有效比表面积,其表面存在很多吸附活性位,用于吸附在反应过程中形成的水蒸汽、气相反应物和产物,因而具有更高的光催化活性,因此在陶瓷泡沫空气净化系统中可以高效地光催化NO降解:在所考察的不同孔密度的陶瓷泡沫过滤器涂覆的TiO2上400 ppb的NO单程转化率均在92.5%以上,高于涂覆在平面陶瓷砖上的TiO2.该陶瓷过滤器的3D多孔特性可增强流体的扰动和混合,使得气相反应物与光催化剂表面有着充分的接触;其大的孔密度也导致高的光催化速率.另外,本文所制样品在所有反应过程中均保持较高且稳定的NO降解速率,这表明其在NO降解反应中没有失活.  相似文献   

6.
Ultrathin metal oxides exhibit unique chemical properties and show promise for applications in heterogeneous catalysis. Monolayer FeO films supported on metal surfaces show large differences in reactivity depending on the metal substrate, potentially enabling tuning of the catalytic properties of these materials. Nitric oxide (NO) adsorption is facile on silver‐supported FeO, whereas a similar film grown on platinum is inert to NO under similar conditions. Ab initio calculations link this substrate‐dependent behavior to steric hindrance caused by substrate‐induced rumpling of the FeO surface, which is stronger for the platinum‐supported film. Calculations show that the size of the activation barrier to adsorption caused by the rumpling is dictated by the strength of the metal–oxide interaction, offering a straightforward method for tailoring the adsorption properties of ultrathin films.  相似文献   

7.
Silica supported amine materials are promising compositions that can be used to effectively remove CO2 from large stationary sources, such as flue gas generated from coal‐fired power plants (ca. 10 % CO2) and potentially from ambient air (ca. 400 ppm CO2). The CO2 adsorption characteristics of prototypical poly(ethyleneimine)–silica composite adsorbents can be significantly enhanced by altering the acid/base properties of the silica support by heteroatom incorporation into the silica matrix. In this study, an array of poly(ethyleneimine)‐impregnated mesoporous silica SBA‐15 materials containing heteroatoms (Al, Ti, Zr, and Ce) in their silica matrices are prepared and examined in adsorption experiments under conditions simulating flue gas (10 % CO2 in Ar) and ambient air (400 ppm CO2 in Ar) to assess the effects of heteroatom incorporation on the CO2 adsorption properties. The structure of the composite adsorbents, including local information concerning the state of the incorporated heteroatoms and the overall surface properties of the silicate supports, are investigated in detail to draw a relationship between the adsorbent structure and CO2 adsorption/desorption performance. The CO2 adsorption/desorption kinetics are assessed by thermogravimetric analysis and in situ FT‐IR measurements. These combined results, coupled with data on adsorbent regenerability, demonstrate a stabilizing effect of the heteroatoms on the poly(ethyleneimine), enhancing adsorbent capacity, adsorption kinetics, regenerability, and stability of the supported aminopolymers over continued cycling. It is suggested that the CO2 adsorption performance of silica–aminopolymer composites may be further enhanced in the future by more precisely tuning the acid/base properties of the support.  相似文献   

8.
The self-assembly of the protein hydrophobin, HFBII, and its self-assembly with cationic, anionic, and nonionic surfactants hexadecylterimethyl ammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), in aqueous solution have been studied by small-angle neutron scattering, SANS. HFBII self-assembles in solution as small globular aggregates, consistent with the formation of trimers or tetramers. Its self-assembly is not substantially affected by the pH or electrolytes. In the presence of CTAB, SDS, or C(12)E(6), HFBII/surfactant complexes are formed. The structure of the HFBII/surfactant complexes has been identified using contrast variation and is in the form of HFBII molecules bound to the outer surface of globular surfactant micelles. The binding of HFBII decreases the surfactant micelle aggregation number for increasing HFBII concentration in solution, and the number of hydrophobin molecules bound/micelle increases.  相似文献   

9.
对淀积在玻璃衬底上厚度约60 nm的金银合金溅射薄膜进行硝酸腐蚀脱银处理, 得到纳米多孔金薄膜. 利用自建的波长检测型表面等离子体共振(SPR)传感装置研究了腐蚀时间对纳米多孔金薄膜SPR特性的影响, 结果发现纳米多孔金薄膜与水溶液接触后在400-900 nm光谱范围内不具有SPR效应, 而当薄膜置于空气中时会产生明显的传播等离子体共振吸收峰, 其共振波长随腐蚀时间增加逐渐红移. 纳米多孔金薄膜在空气气氛中的SPR效应使其能够用于原位监测气相分子在孔内的吸附, 还可对在液相中吸附的生化分子进行离位测试. 本文对L-谷胱甘肽、L-半胱氨酸、2-氨基乙硫醇三种含巯基的生化小分子在纳米多孔金薄膜内的吸附进行了离位分析, 结果表明与传统的致密金薄膜SPR芯片比较, 纳米多孔金薄膜对这些分子显示出更高的灵敏度和更低的检测下限, 这归功于多孔金的大比表面积使其能够吸附大量的生化小分子. 实验还对乙醇蒸气在纳米多孔金薄膜内的吸附进行了原位监测, 发现吸附平衡所用时间较长, 约为160 min.  相似文献   

10.
A novel surface ion imprinted adsorbent [Co(II)‐IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA‐15 as support matrix was prepared for Co(II) analysis with high selectivity. The prepared polymer was characterized by Fourier transmission infrared spectrometry, scanning electron microscopy, X‐ray diffraction and nitrogen adsorption‐desorption isotherm. Bath experiments of Co(II) adsorption onto Co(II)‐IIP were performed under the optimum conditions. The experimental data were analyzed by pseudo‐first‐order and pseudo‐second‐order kinetic models. It was found that the pseudo‐second‐order model best correlated the kinetic data. The intraparticle diffusion and liquid film diffusion were applied to discuss the adsorption mechanism. The results showed that Co(II) adsorption onto IIP was controlled by the intraparticle diffusion mechanism, along with a considerable film diffusion contribution. Langmuir, Freundlich and Dubinin‐Radushke‐ vich adsorption models were applied to determine the isotherm parameters. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g under room temperature. The thermodynamic data were indicative of the spontaneousness of the endothermic sorption process of Co(II) onto Co(II)‐IIP. Co(II)‐IIP showed high affinity and selectivity for template ion compared with non imprinted polymer (NIP).  相似文献   

11.
This study developed a facile technique for site‐specific synthesis of nanometer‐thick polyaniline (PANI) film for fabrication of field‐effect transistor/chemiresistor sensors. The nanothin film had a thickness of 9–20 nm and was of carpet‐like morphology offering a highly accessible surface geometry that enhanced gas adsorption and promoted surface reaction/interaction. When applied for sensing of ammonia (NH3) and nitrogen dioxide (NO2), the performance of the nanothin film device was comparable to that of a 1‐dimensional (1‐D) nanostructure, with a great advantage in ease of processing. Sensing mechanism study indicated electrostatic gating as the dominating mode of sensing.  相似文献   

12.
Adsorption of pure and mixtures of O2 and N2 on isolated single‐walled carbon nanotube (SWCNT) have been investigated at the subcritical (77 K) and different supercritical (273, 293, and 313K) temperatures for the pressure range between 1 and 31 MPa using (N,V,T) Monte Carlo simulation. Both O2 and N2 gravimetric storage capacity exhibit similar behaviors, gas adsorption is higher on outer surface of tube, compared to the inner surface. Results are consistent with the experimental adsorption measurements. All adsorption isotherms for pure and mixture of O2 and N2 are characterized by type I (Langmuir shape), indicating enhanced solid‐fluid interactions. Comparative studies reveal that, under identical conditions, O2 adsorption is higher than N2 adsorption, due to the adsorbate structure. Excess amount of O2 and N2 adsorption reach to a maximum at each temperature and specified pressure which can be suggested an optimum pressure for O2 and N2 storage. In addition, adsorptions of O2 and N2 mixtures have been investigated in two different compositions: (i) an equimolar gas mixture and (ii) air composition. Also, selectivity of nanotube to adsorption of O2 and N2 gases has been calculated for air composition at ambient condition. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
Cemented tungsten carbide (WC) has widely served in modern industry because of its outstanding characteristics, while it could suffer from severely wear both under ambient air and water environments. To exploit a novel carbon‐based film should be a feasible way to modify the surface of cemented WC and overcome these shortcomings. In the present study, the Cr/Ce co‐incorporated (Cr,Ce)/a‐C:H carbon‐based film was successfully deposited on cemented WC. The microstructure and mechanical properties of films were systematically characterized, and their tribological behaviors were tested in ambient air and deionized water environment. The results showed that (Cr,Ce)/a‐C:H film dominated by the typical amorphous structure and the doping Cr existed with the metallic Cr nanocrystallites as well as Ce formed CeO2. The (Cr,Ce)/a‐C:H film could possess good mechanical performances, which could own higher hardness, elastic module, low internal stress, and better adhesive strength. Especially, the as‐prepared (Cr,Ce)/a‐C:H film could present relatively lower friction coefficient and wear rate compared to uncoated cemented WC both under ambient air and deionized water environment, indicating that the Cr/Ce co‐doped (Cr,Ce)/a‐C:H film could be an effective method to modify the surface of cemented WC so as to improve the friction and wear performances of cemented WC materials.  相似文献   

14.
NOx气相光催化氧化降解研究   总被引:24,自引:0,他引:24  
利用TiO2光催化氧化技术对NOx进行了净化研究,在一定反应条件下,NOx光催化氧化降解率很高,P-25的降解达97%。考察了氧气,水含量等对NOx光催化氧化的影响,同时对NOx的吸附、光催化氧化动力学行为及机理进行了研究。利用FTIR分析确定反应产物,催化剂失活是由于反应产物硝酸吸附在催化剂表面所致。  相似文献   

15.
Poly(vinyl alcohol) hydrogels were alternately immersed in aqueous solutions of oppositely charged polymers. The adsorption of the cationic dye methylene blue to the immersed hydrogels suggested the presence of a coating on the hydrogel surfaces. Static contact angles with an air bubble in water showed layer‐by‐layer growth of the films. The films could be transferred onto solid substrates for mechanical strength after the hydrogels were placed on the solid substrates, and this resulted in an estimation of the film thickness. The number of assembly steps could regulate the film thickness. We present here coatings of hydrogels with thin polymer films prepared by layer‐by‐layer assembly. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1062–1067, 2005  相似文献   

16.
An approximate rate equation based on a film-model representation of diffusional mass transfer has been developed to describe the kinetics of multicomponent adsorption. The model describes mass transfer as a pseudo-steady state diffusion process through a flat film of thickness equal to one fifth of the particle radius. The flux relationships are integrated across the film yielding analytical expressions for the rate of mass transfer in a multicomponent adsorption system. The usefulness of the film model approximation is tested by carrying out calculations for three different practical adsorption systems: the adsorption of n-pentane and n-heptane mixtures on NaCaA zeolite discussed by Marutovsky and Bülow (1987); the adsorption of air in molecular sieve RS-10 discussed by Farooq et al. (1993); and the separation of air in a kinetically-controlled nitrogen PSA process discussed by Farooq and Ruthven (1990) and Sundaram and Yang (1998). In each case, the film model approximation predicts the expected trends accounting for the coupling of diffusion fluxes in the adsorbed phase.  相似文献   

17.
Gate‐opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate‐opening that is induced by gas adsorption, the pore‐opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas‐selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas‐induced gate‐opening process of a microporous metal–organic framework, [Mn(ina)2] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X‐ray diffraction, in situ powder X‐ray diffraction coupled with differential scanning calorimetry (XRD‐DSC), and gas adsorption–desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction.  相似文献   

18.
吴玮巍  蒋益明  郭峰  钟澄  刘平  李劲 《化学学报》2005,63(20):1913-1916
采用真空蒸发方法制备了Cu/TCNQ金属机双层膜. 系统研究了湿度对CuTCNQ络合物形成过程的影响规律, 结果表明湿度对膜的化学反应传质过程有明显加速作用. 过程机制在干燥条件与湿度作用条件下有本质不同: 前者为固体化学扩散机制, 而后者为水溶液电化学反应机制. 进一步深入分析传质时间与湿度的关系后发现, 湿度条件下薄膜对水分子的吸附是反应传质速度的控制步骤.  相似文献   

19.
Purification is a critical step to obtain hydrophobin HFBII for use in positive applications. In this study, hydrophobin HFBII was produced by Trichoderma reesei via submerged fermentation. Using the CO2-foam fractionation method yielded a fourfold increase in protein concentration. The foamate (αL-HFBII) was dried using a nano spray-dryer under optimal temperature. The gushing activity of the dried foamate (αS-HFBII) decreased. Addition of Tween 80 to the foamate before the drying process partially prevented the deactivation of hydrophobin HFBII. The purity of the powder was enhanced based on the theory of CO2-nanobubbles in a CO2-rich environment. The collected CO2-nanobubbles were added to an apolar–polar system and the interface of these two phases was collected. After evaporation of the apolar phase, the purity of the hydrophobins assembled on the surface of the liquid was significantly improved.  相似文献   

20.
In this article we discuss those materials that have recorded the highest adsorption capacities for the greenhouse gas CO2 under ambient conditions as well as at different temperatures and pressures. For convenience, the materials have been categorized under four categories, viz., porous carbon, metal–organic, zeolite and mesoporous silica, and porous organic frameworks. It has been found that the gas adsorption property significantly relies on several factors such as high surface area and pore volume and the presence of N‐, O‐ and S‐containing moieties. The presence of a microporous structure and strong interaction between the CO2 molecules with the framework through H‐bonding or dipole–quadrupole interactions facilitates adsorption of the gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号