首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffusion of penetrants in polymers is of technological importance in many areas including chromatography and fuel cell membranes. In this work, the effect of chain conformations on tracer diffusion is studied using molecular simulations and a percolation theory. The polymeric matrix is composed of tangent hard sphere chains that are fixed in space; conformations are changed by tuning the stiffness of the chains. The tracer diffusion coefficient is relatively insensitive to the chain stiffness when polymer chains are frozen as in polymer glasses with the local chain dynamics switched off. An analysis of the matrix using percolation theory shows that the polymer volume fraction at the free volume percolation threshold is also relatively insensitive to the chain stiffness, consistent with the diffusion results. This is surprising because the site‐site intermolecular pair correlation functions in the matrix are quite sensitive to the chain stiffness. In contrast, the tracer diffusion coefficient in a melt of mobile chains decreases significantly as the chain stiffness is increased. We conclude that tracer diffusion is only weakly correlated with the chain conformations and local chain dynamics plays an important role. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
Extensive molecular-dynamics simulations have been performed to study the effect of chain conformational rigidity, controlled by bending and torsion potentials, on self-diffusion in polymer melts. The polymer model employs a novel torsion potential that avoids computational singularities without the need to impose rigid constraints on the bending angles. Two power laws are traditionally used to characterize the dependence of the self-diffusion coefficient on polymer length: D proportional to N(-nu) with nu=1 for NNe (reptation regime), Ne being the entanglement length. Our simulations, at constant temperature and density, up to N=250 reveal that, as the chain rigidity increases, the exponent nu gradually increases towards nu=2.0 for NNe. The value of Ne is slightly increased from 70 for flexible chains, up to the point where the crossover becomes undefined. This behavior is confirmed also by an analysis of the bead mean-square displacement. Subsequent investigations of the Rouse modes, dynamical structure factor, and chain trajectories indicate that the pre-reptation regime, for short stiff chains, is a modified Rouse regime rather than reptation.  相似文献   

3.
Computer simulation studies on the miscibility behavior and single chain properties in binary polymer blends are reviewed. We consider blends of various architectures in order to identify important architectural parameters on a coarse grained level and study their qualitative consequences for the miscibility behavior. The phase diagram, the relation between the exchange chemical potential and the composition, and the intermolecular pair correlation functions for symmetric blends of linear chains, blends of cyclic polymers, blends with an asymmetry in cohesive energies, blends with different chain lengths, blends with distinct monomer shapes, and blends with a stiffness disparity between the components are discussed. For strictly symmetric blends the Flory‐Huggins theory becomes quantitatively correct in the long chain length limit, when the χ parameter is identified via the intermolecular pair correlation function. For small chain lengths composition fluctuations are important. They manifest themselves in 3D Ising behavior at the critical point and an upward parabolic curvature of the χ parameter from small‐angle neutron scattering close to the critical point. The ratio between the mean field estimate and the true critical temperature decreases like √χ/(ρb3) for long chain lengths. The chain conformations in the minority phase of a symmetric blend shrink as to reduce the number of energeticaly unfavorable interactions. Scaling arguments, detailed self‐consistent field calculations and Monte Carlo simulations of chains with up to 512 effective segments agree that the conformational changes decrease around the critical point like 1/√N. Other mechanisms for a composition dependence of the single chain conformations in asymmetric blends are discussed. If the constituents of the blends have non‐additive monomer shapes, one has a large positive chain‐length‐independent entropic contribution to the χ parameter. In this case the blend phase separates upon heating at a lower critical solution temperature. Upon increasing the chain length the critical temperature approaches a finite value from above. For blends with a stiffness disparity an entropic contribution of the χ parameter of the order 10–3 is measured with high accuracy. Also the enthalpic contribution increases, because a back folding of the stiffer component is suppressed and the stiffer chains possess more intermolecular contacts. Two aspects of the single chain dynamics in blends are discussed: (a) The dynamics of short non‐entangled chains in a binary blend are studied via dynamic Monte Carlo simulations. There is hardly any coupling between the chain dynamics and the thermodynamic state of the mixture. Above the critical temperatures both the translational diffusion and the relaxation of the chain conformations are independent of the temperature. (b) Irreversible reactions of a small fraction of reactive polymers at a strongly segregated interface in a symmetric binary polymer blend are investigated. End‐functionalized homopolymers of different species react at the interface instantaneously and irreversibly to form diblock copolymers. The initial reaction rate for small reactant concentrations is time dependent and larger than expected from theory. At later times there is a depletion of the reactive chains at the interface and the reaction is determined by the flux of the chains to the interface. Pertinent off‐lattice simulations and analytical theories are briefly discussed.  相似文献   

4.
Molecular dynamics simulations are used to study the spreading of binary polymer nanodroplets in a cylindrical geometry. The polymers, described by the bead-spring model, spread on a flat surface with a surface-coupled Langevin thermostat to mimic the effects of a corrugated surface. Each droplet consists of chains of length 10 or 100 monomers with approximately 350,000 monomers total. The qualitative features of the spreading dynamics are presented for differences in chain length, surface interaction strength, and composition. When the components of the droplet differ only in the surface interaction strength, the more strongly wetting component forms a monolayer film on the surface even when both materials are above or below the wetting transition. In the case where the only difference is the polymer chain length, the monolayer film beneath the droplet is composed of an equal amount of short chain and long chain monomers even when one component (the shorter chain length) is above the wetting transition and the other is not. The fraction of short and long chains in the precursor foot depends on whether both the short and the long chains are in the wetting regime. Diluting the concentration of the strongly wetting component in a mixture with a weakly wetting component decreases the rate of diffusion of the wetting material from the bulk to the surface and limits the spreading rate of the precursor foot, but the bulk spreading rate actually increases when both components are present. This may be due to the strongly wetting material pushing out the weakly wetting material as it moves toward the precursor foot.  相似文献   

5.
在自由能格子Boltzmann方法的基础上, 采用附加的作用力项描述非理想流体作用, 得到了改进自由能形式的格子Boltzmann模型. 对于高分子共混体系, 采用了Flory-Huggins自由能函数形式, 对两相聚合物熔体中的相区粗化过程进行了模拟. 首先通过格子Boltzmann方法计算得到了聚合物共混物的相分离曲线, 该曲线与两相共存曲线的解析值吻合得较好. 应用此模型, 研究了聚合物共混体系不稳分相机理的相区粗化过程. 在此基础上, 探讨了分相后期相区尺寸随时间的增长指数与高分子链长和Flory-Huggins相互作用参数的关系. 模拟结果表明, 相区的后期增长机理与高分子链长和Flory-Huggins相互作用参数关系不大, 而流体的粘度决定了相区的后期增长机理, 是影响相区后期增长指数的重要因素.  相似文献   

6.
We investigate the dynamics of polymer translocation through a nanopore using two-dimensional Langevin dynamics simulations. In the absence of an external driving force, we consider a polymer which is initially placed in the middle of the pore and study the escape time tau(e) required for the polymer to completely exit the pore on either side. The distribution of the escape times is wide and has a long tail. We find that tau(e) scales with the chain length N as tau(e) approximately N(1+2nu), where nu is the Flory exponent. For driven translocation, we concentrate on the influence of the friction coefficient xi, the driving force E, and the length of the chain N on the translocation time tau, which is defined as the time duration between the first monomer entering the pore and the last monomer leaving the pore. For strong driving forces, the distribution of translocation times is symmetric and narrow without a long tail and tau approximately E(-1). The influence of xi depends on the ratio between the driving and frictional forces. For intermediate xi, we find a crossover scaling for tau with N from tau approximately N(2nu) for relatively short chains to tau approximately N(1+nu) for longer chains. However, for higher xi, only tau approximately N(1+nu) is observed even for short chains, and there is no crossover behavior. This result can be explained by the fact that increasing xi increases the Rouse relaxation time of the chain, in which case even relatively short chains have no time to relax during translocation. Our results are in good agreement with previous simulations based on the fluctuating bond lattice model of polymers at intermediate friction values, but reveal additional features of dependency on friction.  相似文献   

7.
The authors have studied the microphase separation of symmetric diblock copolymers with variable block stiffness and different block chain lengths using coarse-grained molecular dynamics simulations. The simulation results show that for symmetric diblock copolymers, a combination of chain length and relative stiffness between the blocks may play the major role in determining the equilibrium morphology of the system. When the variation in stiffness between blocks is small, the equilibrium morphology of the diblock system is found to be lamellar; this is also the case for systems with small chain lengths, regardless of the difference in block stiffness. However, in systems with longer chains with modest variation in stiffness between the blocks, an ordered cylindrical phase is formed in which the stiffer blocks form cylinders completely surrounded by the flexible components. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2556–2565, 2009  相似文献   

8.
Coarse‐grained molecular dynamics simulations are used to investigate the adsorption behavior of monodisperse and bidisperse polymer chains on the nanoparticle (NP) surface at various polymer–NP interactions, chain lengths, and stiffness. At a strong polymer–NP interaction, long chains preferentially occupy interfacial region and squeeze short chains out of the interfacial region. Semiflexible chains with proper stiffness wrap NPs dominantly in a helical fashion, whereas fully flexible chains constitute the surrounding matrix. As chain stiffness increases, the results of the preferential adsorption are the opposite. The chain‐length or chain‐stiffness‐induced selective adsorption behavior of polymer chains in the polymer–NP interfacial region relies on a delicate competition between entropic and enthalpic contributions to the total free energy. These results could provide insights into polymer–NP interfacial adsorption behavior and guide the design of high‐performance nanocomposites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1829–1837  相似文献   

9.
Spurred by an experimental controversy in the literature, we investigate the end-monomer dynamics of semiflexible polymers through Brownian hydrodynamic simulations and dynamic mean-field theory. Precise experimental observations over the last few years of end-monomer dynamics in the diffusion of double-stranded DNA have given conflicting results: one study indicated an unexpected Rouse-like scaling of the mean squared displacement (MSD) ?r(2)(t)? ~ t(1/2) at intermediate times, corresponding to fluctuations at length scales larger than the persistence length but smaller than the coil size; another study claimed the more conventional Zimm scaling ?r(2)(t)? ~ t(2/3) in the same time range. Using hydrodynamic simulations, analytical and scaling theories, we find a novel intermediate dynamical regime where the effective local exponent of the end-monomer MSD, α(t) = d log?r(2)(t)?/d log t, drops below the Zimm value of 2/3 for sufficiently long chains. The deviation from the Zimm prediction increases with chain length, though it does not reach the Rouse limit of 1/2. The qualitative features of this intermediate regime, found in simulations and in an improved mean-field theory for semiflexible polymers, in particular the variation of α(t) with chain and persistence lengths, can be reproduced through a heuristic scaling argument. Anomalously low values of the effective exponent α are explained by hydrodynamic effects related to the slow crossover from dynamics on length scales smaller than the persistence length to dynamics on larger length scales.  相似文献   

10.
11.
The pressure dependence of the termination rate constant kt for the free radical polymerization of monomers such as styrene is a function of polymer chain length, chain stiffness, and monomer viscosity, all of which influence the rate of segmental diffusion of an active radical chain end out of the coiled polymer chain to a position in which it can react with a proximate radical. Although kt is not sensitive to changes in chain length, the large increase in molecular weight is responsible for a significant reduction in kt at high pressures. For most of the common vinyl polymers, which exhibit some degree of chain stiffness, kt is inversely proportional to a fractional power of the monomer viscosity because it depends in part on the resistance of chain segments to movement and in part on the influence of viscosity in controlling diffusion of the chain ends. The fractional exponent appears to increase with pressure and this is interpreted as evidence that the polymer chains become more flexible in a more viscous solvent. Because the fractional exponent is higher for more flexible chains, the value of the activation volume for chain termination is an indication of the degree of flexibility of the polymer chains, provided that the monomer is a good solvent for the polymer and that chain transfer is negligible.  相似文献   

12.
Monte Carlo simulations are presented for a coarse-grained model of polymer brushes with polymers having a varying degree of stiffness. Both linear chains and ring polymers grafted to a flat structureless non-adsorbing substrate surface are considered. Applying good solvent conditions, it is shown that with growing polymer stiffness the brush height increases significantly. The monomer density profiles for the case of ring polymers (chain length N(R) = 64) are very similar to the case of corresponding linear chains (N(L) = 32, grafting density larger by a factor of two) in the case of flexible polymers, while slight differences appear with increasing stiffness. Evidence is obtained that the chain dynamics in brushes is slowed down dramatically with increasing stiffness. Very short stiff rings (N(R) ≤ 16) behave like disks, grafted to the substrate such that the vector, perpendicular to the disk plane, is oriented parallel to the substrate surface. It is suggested that such systems can undergo phase transitions to states with liquid crystalline order.  相似文献   

13.
Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond fluctuation model, where differences in the interaction energies between nonbonded nearest neighbors distinguish the two components of a blend. Simulations employing only local moves and respecting a no bond crossing condition were carried out for blends with a range of compositions, densities, and chain lengths. The blends investigated here have long time dynamics in the crossover region between Rouse and entangled behavior. In order to investigate the scaling of the self-diffusion coefficients, characteristic chain lengths N(c) are calculated from the packing length of the chains. These are combined with a local mobility mu determined from the acceptance rate and the effective bond length to yield characteristic self-diffusion coefficients D(c)=muN(c). We find that the data for both melts and blends collapse onto a common line in a graph of reduced diffusion coefficients DD(c) as a function of reduced chain length NN(c). The composition dependence of dynamic properties is investigated in detail for melts and blends with chains of length N=20 at three different densities. For these blends, we calculate friction coefficients from the local mobilities and consider their composition and pressure dependence. The friction coefficients determined in this way show many of the characteristics observed in experiments on miscible blends.  相似文献   

14.
Dissipative particle dynamics (DPD), a mesoscopic simulation approach, has been used to investigate the chain length effect on the structural property of the immiscible polyethylene (PE)/poly(L-lactide) (PLLA) polymer in a polymer blend and in a system with their diblock copolymer. In this work, the interaction parameter in DPD simulation, related to the Flory-Huggins interaction parameter chi, is estimated by the calculation of mixing energy for each pair of components in molecular dynamics simulation. The immiscibility property of PE and PLLA polymers induces the phase separation and exhibits different architectures at different volume fractions. In order to observe the structural property, the radius of gyration is used to observe the detailed arrangement of the polymer chains. It shows that the structure arrangement of a polymer chain is dependent on the phase structure and has a significantly different structural arrangement character for the very short chains in the homopolymer and copolymers. The chain length effect on the degree of stretching or extension of polymers has also been observed. As the chain length increases, the chain exhibits more stretching behavior at lamellae, perforated lamellae, and cylindrical configurations, whereas the chain exhibits a similar degree of stretching or extension at the cluster configuration.  相似文献   

15.
The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.  相似文献   

16.
选择 3种不同丙烯酸含量的乙烯 丙烯酸共聚物 (EAA)为原材料 ,二苯醚 (DPE)为稀释剂 ,研究了淬冷温度、粗化时间等影响液滴生长的动力学因素对热诱导相分离法 (TIPS)制备EAA DPE亲水性高分子微孔膜结构的影响 .淬冷温度的高低决定了EAA DPE体系是发生液 液相分离还是固 液相分离 ,而产生相分离的机理不同将影响稀释剂液滴的生长 ,最终影响微孔膜的孔径 .实验结果表明 ,在相同粗化时间的条件下 ,随着EAA1 41 0 DPE、EAA3 0 0 2 DPE、EAA3 0 0 3 DPE三体系冷却温度的逐渐升高 ,孔径逐渐变大 .在结晶温度以下 ( 0℃、3 0℃、60℃ )粗化时间相同时 ,温度对微孔膜的孔径影响较小 ,例如 0℃和 3 0℃的恒温条件粗化 1 0min,微孔膜的孔径在 1~ 3 μm之间 ;在 60℃的恒温条件粗化 1 0min ,微孔膜的孔径在 3~ 5 μm之间 .而在 90℃的恒温条件粗化相同的时间 ,由于体系始终处于结晶温度线以上 ,体系始终处在液 液相分离区域 ,最终得到微孔膜的孔径达到了 6~8μm .在结晶温度以下 ( 3 0℃ )进行恒温粗化 ,由于体系的过冷程度很大 ,液滴相的粗化过程被抑制住 ,所以粗化时间对微孔膜的孔径影响不大 ;而在结晶温度以上 ( 90℃ )进行恒温粗化时 ,则是随着粗化时间的延长 ,微孔膜的孔径逐渐变大  相似文献   

17.
A coarse grained model for flexible polymers end-grafted to repulsive spherical nanoparticles is studied for various chain lengths and grafting densities under good solvent conditions by molecular dynamics methods and density functional theory. With increasing chain length, the monomer density profile exhibits a crossover to the star polymer limit. The distribution of polymer ends and the linear dimensions of individual polymer chains are obtained, while the inhomogeneous stretching of the chains is characterized by the local persistence lengths. The results on the structure factor of both single chain and full spherical brush as well as the range of applicability of the different theoretical tools are presented. Finally, a brief discussion of the experiment is given.  相似文献   

18.
Discontinuous molecular dynamics simulations are performed on a system containing 32 hard chains of length 192 at a volume fraction of phi = 0.45 to explore the idea that localized entanglements have a significant effect on the dynamics of the individual chains within an entangled polymer melt. Anomalous behavior can still be observed when studying the dynamics of the individual chains, although increased time averaging causes the anomalous relaxation-memory-release behavior that was observed previously in the system to smooth out. First, the individual chain mean squared displacements and apparent diffusion coefficients are calculated, and a wide distribution of diffusive behavior is found. Although the apparent diffusion coefficient curve averaged over all chains displays the predicted long-time diffusive behavior, the curves for the individual chains differ both qualitatively and quantitatively. They display superdiffusive, diffusive, and subdiffusive behavior, with the largest percentage of chains exhibiting superdiffusive behavior and the smallest percentage exhibiting the predicted diffusive behavior. Next, the individual chain end-to-end vector autocorrelation functions and relaxation times are determined, and a wide distribution of stress relaxation behavior is found. The times when the end-to-end vector autocorrelation functions relax completely span almost an order of magnitude in reduced time. For some chains, the end-to-end vector autocorrelation function relaxes smoothly toward zero similar to the system average; however, for other chains the relaxation is slowed greatly, indicating the presence of additional entanglements. Almost half of the chains exhibit the anomalous behavior in the end-to-end vector autocorrelation function. Finally, the dynamic properties are displayed for a single chain exhibiting anomalous relaxation-memory-release behavior, supporting the idea that the relaxation-memory-release behavior is a single-chain property.  相似文献   

19.
We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength E, length of the chain N, and length of the pore L on forced translocation. As our main result, we find a crossover scaling for the translocation time tau with the chain length from tau approximately N2nu for relatively short polymers to tau approximately N1+nu for longer chains, where nu is the Flory exponent. We demonstrate that this crossover is due to the change in the dependence of the translocation velocity v on the chain length. For relatively short chains v approximately N-nu, which crosses over to v approximately N(-1) for long polymers. The reason for this is that with increasing N there is a high density of segments near the exit of the pore, which slows down the translocation process due to slow relaxation of the chain. For the case of a long nanopore for which R parallel, the radius of gyration Rg along the pore, is smaller than the pore length, we find no clear scaling of the translocation time with the chain length. For large N, however, the asymptotic scaling tau approximately N1+nu is recovered. In this regime, tau is almost independent of L. We have previously found that for a polymer, which is initially placed in the middle of the pore, there is a minimum in the escape time for R parallel approximately L. We show here that this minimum persists for weak fields E such that EL is less than some critical value, but vanishes for large values of EL.  相似文献   

20.
Monte Carlo simulations of coarse–grained models of macromolecules offer a unique tool to study the interplay between coil conformations, thermodynamic properties, and chain configurational relaxation and diffusion. Two examples are discussed where the chain conformation strongly differs from a gaussian coil: (i) collapsed chains in a bad solvent, where anomalous diffusion occurs in the Rouse limit and the relaxation time increases at least with the third power of chain length. (ii) Expulsion of a chain from a semidilute polymer brush. The initially stretched chain contracts to a gaussian coil and the center of mass moves outward with constant velocity until it reaches the region of the “last blob” where crossover to diffusive behavior occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号