首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanisms of the HCO reactions with HONO and HNOH have been studied at the G2M level of theory based on the geometric parameters optimized at BH&HLYP/6‐311G(d,p). The rate constants in the temperature range 200–3000 K at different pressures have been predicted by microcanonical RRKM and/or variational transition state theory calculations with Eckart tunneling corrections. For the HCO + HONO reaction, hydrogen abstraction from trans‐HONO and cis‐HONO by HCO produces H2CO + NO2, with the latter being dominant. Two other channels involving cis‐HONO by the association/decomposition mechanism via the HC(O)N(O)OH intermediate, which could fragment to give H2O + CO + NO at high temperatures, were also found to be important. For the HCO + HNOH reaction, three reaction channels were identified: one association reaction giving a stable intermediate, HC(O)N(H)OH (LM2), and two hydrogen abstraction channels producing H2CO and H2NOH. The dominant products were predicted to be the formation of LM2 at low temperatures and H2NOH + CO at middle and high temperatures. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 178–187 2004  相似文献   

2.
FTIR研究HCO自由基与NO2反应的动力学   总被引:1,自引:0,他引:1  
陈平  郑小明  Meyer S  Temps F 《物理化学学报》2000,16(11):1043-1047
为了减少和控制油品在燃烧时 NOx的排放 ,对 NOx再燃烧进程的动力学研究一直受到人们的关注 [1,2].迄今为止 ,对于该进程中的一些可能参与的基元化学反应知道甚少 .从实验测得的总速率常数看 ,在室温下 ,主反应 HCO自由基与 NO2的反应是一个相当快速的反应 [3],其总速率常数约为 3.3× 1013 cm3· mol- 1· s- 1.但是 ,有关该反应体系的产物分布情况及其反应机理目前还未见报导 .该反应体系在热力学上存在着下列 放热反应 [4]:  反应 [1a- 1e]可在低压条件下发生 ,而反应 [1f- 1g]只能在高压范围内产生 [5,6].本文是以高纯度的甲…  相似文献   

3.
Nitrous acid (HONO) has been observed to build in the atmosphere of cities during the nighttime hours and it is suspected that photolysis of HONO may be a significant source of HO radicals early in the day. The sources of HONO are poorly understood, making it difficult to account for nighttime HONO formation in photochemical modeling studies of urban atmospheres, such as modeling of urban O3 formation. This paper reviews the available information on measurements of HONO in the atmosphere and suggest mechanisms of HONO formation. The most extensive atmospheric measurement databases are used to investigate the relations between HONO and potential precursors. Based on these analyses, the nighttime HONO concentrations are found to correlate best with the product of NO, NO2 and H2O concentrations, or possibly the NO, NO2, H2O, and aerosol concentrations. A new mechanism for nighttime HONO formation is proposed that is consistent with this precursor relationship, namely, reaction of N2O3 with moist aerosols (or other surfaces) to form two HONO molecules. Theoretical considerations of the equilibrium constant for N2O3 formation and the theory of gas-particle reactions show that the proposed reaction is a plausible candidate for HONO formation in urban atmospheres. For photochemical modeling purposes, a relation is derived in terms of gas phase species only (i.e., excluding the aerosol concentration): NO + NO2 + H2O → 2 HONO with a rate constant of 1.68 x 10-17 e6348/T (ppm-2 min-1). This rate constant is based on an analysis of ambient measurements of HONO, NO, NO2 and H2O, with a temperature dependence from the equilibrium constant for formation of N2O3. Photochemical grid modeling is used to investigate the effects of this relation on simulated HONO and O3 concentrations in Los Angeles, and the results are compared to two alternative sources of nighttime HONO that have been used by modelers. Modeling results show that the proposed relation results in HONO concentrations consistent with ambient measurements. Furthermore, the relation represents a conservative modeling approach because HONO production is effectively confined to the model surface layers in the nighttime hours, the time and place for which ambient data exist to show that HONO formation occurs. The empirical relation derived here should provide a useful tool for modelers until such time as knowledge of the HONO forming mechanisms has improved and more quantitative relations can be derived.  相似文献   

4.
Quantum chemical calculations on single molecules were performed to provide insight into the decomposition mechanism of shocked RDX. These calculations complement time-resolved spectroscopy measurements on shock wave compressed RDX crystals (previous paper, this issue). It is proposed that unimolecular decomposition is the primary pathway for RDX decomposition in its early stages and at stresses lower than approximately 10 GPa. This decomposition leads to the generation of broadband emission from 350 to 850 nm. Chemiluminescence from (2)B1 and (2)B2 excited states of NO2 radicals is associated with a major portion of the experimentally observed emission spectrum (>400 nm). The remaining portion (<400 nm) of the emission spectrum primarily results from excited HONO intermediates. It is proposed that for stresses higher than 10 GPa, bimolecular reactions between radical decomposition products and unreacted RDX molecules become the dominant pathway. This radical assisted homolysis pathway is cyclic and leads to the acceleration of decomposition, with increased production of low energy NO2 radicals. These radicals produce emission that is stronger in the long wavelength portion of the spectrum. Finally, a comprehensive chemical decomposition mechanism is put forward that is consistent with the experimental observations of shock-induced emission in RDX crystals.  相似文献   

5.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

6.
Using a coated-wall flow tube connected to a mass spectrometer, the heterogeneous conversion of NO2 to HONO on dry hydrocarbon soot surfaces has been studied at room temperature and 243 K. Particular attention was given to the measurement of the HONO yield as a function of hydrocarbon fuel, NO2 partial pressure, extent of uptake, and surface oxidation state. In all cases, the yield is invariant of these parameters and close to unity, indicative of an irreversible oxidation mechanism by which the NO2 abstracts an H atom from the surface. XPS analysis shows that the surface N content does not measurably increase with NO2 exposure. There is minimal surface reactivity regeneration with time or via exposure to high relative humidity. A BET surface area measurement of the entire soot film exposed to NO2 was used to determine the amount of HONO that can be generated from the soot surface per unit surface area, prior to its deactivation. The reduction of NO2 to HONO on soot is unlikely to account for the observed nighttime buildup of HONO in polluted urban environments.  相似文献   

7.
8.
The interaction of NO(2) with TiO(2) solid films was studied under UV irradiation using a low pressure flow reactor (1-10 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. HONO, NO, and N(2)O were observed as the products of the reactive uptake of NO(2) to the illuminated TiO(2) surface with the sum of their yields corresponding nearly to 100% of the nitrogen mass balance. The yield of the products was measured as a function of different parameters such as irradiance intensity, relative humidity (RH), temperature, and concentrations of NO(2) and O(2). The yield of N(2)O was found to be 0.15 ± 0.05 independent of the experimental conditions. The distribution of the products between NO and HONO was found to be independent of temperature in the range T = 280-320 K and was governed by relative humidity: increase in RH led to lower NO and higher HONO yield, with a maximum of nearly 65% reached at ~5% RH. Presence of molecular oxygen was shown to shift the HONO/NO distribution to HONO at low RH (<5%) with no effect at higher RH where the HONO yield is maximum. The following values for the yield of the products of NO(2) interaction with pure TiO(2) under real atmospheric conditions can be recommended from this work: 0.65 ± 0.10, 0.05 ± 0.05, and 0.15 ± 0.05 for HONO, NO, and N(2)O, respectively. The mechanism of the photoinitiated heterogeneous reaction and possible atmospheric implications of the obtained results are discussed.  相似文献   

9.
冷等离子体与催化协同反应是一个新的化学研究方向.本文总结了利用协同反应研究脱硝反应和几类化学反应取得的成果.包括NO分解反应、CH4选择性催化还原反应、NH3选择性催化还原反应、同时脱硝和脱除PM2.5过程、VOCs脱除、CO2分解以及丙烷二氧化碳重整等反应.协同作用使这些反应实现了低温或室温下的高活性.  相似文献   

10.
A series of manganese-ceria supported on alumina catalysts with various Mn/Ce ratios are investigated in both methanol decomposition to CO and hydrogen and SCR of NO(x) with CO. The study is aimed at the potential application of both reactions in integrated devices, where NO(x) is reduced with the products of the decomposed methanol. The samples are characterized by nitrogen physisorption, XRD, TEM, XPS, UV-Vis, and TPR. It was established that manganese-ceria supported on alumina catalysts are perspective in both methanol decomposition and NO reduction at temperatures above 723 K, which are typical for exhausted gases from the vehicles and some stationary stations. The best catalytic activity and selectivity to the desired products under these conditions was found for the samples with Mn/Mn+Ce ratio of 0.5 and 0.7. This superior catalytic performance is related to the formation of mixed valence Mn(3+)/Ce(4+) and Mn(4+)/Ce(3+) active sites.  相似文献   

11.
Alumina is an important component of airborne dust particles as well as of building materials and soils found in the tropospheric boundary layer. While the uptake and reactions of oxides of nitrogen and their photochemistry on alumina have been reported in the past, little is known about the chemistry when organics are also present. Fourier transform infrared (FTIR) spectroscopy at ~23 °C was used to study reactions of NO(2) on γ-Al(2)O(3) particles that had been derivatized using 7-octenyltrichlorosilane to form a self-assembled monolayer (SAM). For comparison, the reactions with untreated γ-Al(2)O(3) were also studied. In both cases, the particles were exposed to water vapor prior to NO(2) to provide adsorbed water for reaction. As expected, surface-bound HONO, NO(2)(-), and NO(3)(-) were formed. Surprisingly, oxidation of the organic by surface-bound nitrogen oxides was observed in the dark, forming organo-nitrogen products identified as nitronates (R(2)C[double bond, length as m-dash]NO(2)(-)). Oxidation was more rapid under irradiation (λ > 290 nm) and formed organic nitrates and carbonyl compounds and/or peroxy nitrates in addition to the products observed in the dark. Mass spectrometry of the gas phase during irradiation revealed the production of NO, CO(2), and CO. These studies provide evidence for oxidation of organic compounds on particles and boundary layer surfaces that are exposed to air containing oxides of nitrogen, as well as new pathways for the formation of nitrogen-containing compounds on these surfaces.  相似文献   

12.
Photochemical reactions of trace compounds in snow have important implications for the composition of the atmospheric boundary layer in snow-covered regions and for the interpretation of concentration profiles in snow and ice regarding the composition of the past atmosphere. One of the prominent reactions is the photolysis of nitrate, which leads to the formation of OH radicals in the snow and to the release of reactive nitrogen compounds, like nitrogen oxides (NO and NO2) and nitrous acid (HONO) to the atmosphere. We performed photolysis experiments using artificial snow, containing variable initial concentrations of nitrate and nitrite, to investigate the reaction mechanism responsible for the formation of the reactive nitrogen compounds. Increasing the initial nitrite concentrations resulted in the formation of significant amounts of nitrate in the snow. A possible precursor of nitrate is NO2, which can be transformed into nitrate either by the attack of a hydroxy radical or the hydrolysis of the dimer (N2O4). A mechanism for the transformation of the nitrogen-containing compounds in snow was developed, assuming that all reactions took place in a quasi-liquid layer (QLL) at the surface of the ice crystals. The unknown photolysis rates of nitrate and nitrite and the rates of NO and NO2 transfer from the snow to the gas phase, respectively, were adjusted to give an optimum fit of the calculated time series of nitrate, nitrite, and gas phase NOx with respect to the experimental data. Best agreement was obtained with a ∼25 times faster photolysis rate of nitrite compared to nitrate. The formation of NO2 is probably the dominant channel for the nitrate photolysis. We used the reaction mechanism further to investigate the release of NOx and HONO under natural conditions. We found that NOx emissions are by far dominated by the release of NO2. The release of HONO to the gas phase depends on the pH of the snow and the HONO transfer rate to the gas phase. However, due to the small amounts of nitrite produced under natural conditions, the formation of HONO in the QLL is probably negligible. We suggest that observed emissions of HONO from the surface snow are dominated by the heterogeneous formation of HONO in the firn air. The reaction of NO2 on the surfaces of the ice crystals is the most likely HONO source to the gas phase.  相似文献   

13.
A large set of quasi-classical, direct dynamics trajectory simulations were performed for decomposition of 1,5-dinitrobiuret (DNB) over a temperature range from 4000 to 6000 K, aimed at providing insight into DNB decomposition mechanisms. The trajectories revealed various decomposition paths and reproduced the products (including HNCO, N(2)O, NO(2), NO, and water) observed in DNB pyrolysis experiments. Using trajectory results as a guide, structures of intermediate complexes and transition states that might be important for decomposition were determined using density functional theory calculations. Rice-Ramsperger-Kassel-Marcus (RRKM) theory was then utilized to examine behaviors of the energized reactant and intermediates and to determine unimolecular rates for crossing various transition states. According to RRKM predictions, the dominant initial decomposition path of energized DNB corresponds to elimination of HNNO(2)H via a concerted mechanism where the molecular decomposition is accompanied with intramolecular H-atom transfer from the central nitrogen to the terminal nitro oxygen. Other important paths correspond to elimination of NO(2) and H(2)NNO(2). NO(2) elimination is a simple N-N bond scission process. Formation and elimination of nitramide is, however, dynamically complicated, requiring twisting a -NHNO(2) group out of the molecular plane, followed by an intramolecular reaction to form nitramide before its elimination. These two paths become significant at temperatures above 1500 K, accounting for >17% of DNB decomposition at 2000 K. This work demonstrates that quasi-classical trajectory simulations, in conjunction with electronic structure and RRKM calculations, are able to extract mechanisms, kinetics, dynamics and product branching ratios for the decomposition of complex energetic molecules and to predict how they vary with decomposition temperature.  相似文献   

14.
在B3LYP/6-311G(d,p)和CCSD(T)/6-311G(d,p)水平上给出了HCO+NO2反应详细的势能面信息.计算结果表明,该反应采用两种无垒进攻方式,分别得到两种加合物H(O)CNO2和H(O)CONO.找到7种能量低于反应物且合理的产物及相应的反应路径.通过对热力学和动力学的分析,产物HONO+CO(P2,P3),HNO+CO2(P1)和H+CO2+NO(P6)的形成更为有利.计算结果同实验相符,且有助于深入了解HCO自由基的化学行为.  相似文献   

15.
A differential optical absorption spectrometer (DOAS) system was operated at Long Beach, CA during the 1987 SCAQS Fall episodes to measure atmospheric concentrations of nitrous acid (HONO), as well as ambient levels of nitrogen dioxide (NO2) and formaldehyde (HCHO). The rapid scanning (-3000 spectra per min) spectrometer was interfaced to a 25 m basepath open, multiple reflection system operated routinely at a total optical path of 800 m. During several of the Fall episodes at Long Beach, levels of gaseous HONO were the highest (>15 ppb) reported to date by the DOAS technique. Although approximately half, to all, of the measured nighttime HONO concentrations could be accounted for by proposed heterogeneous formation pathways involving NO2, HONO concentrations correlated well with primary pollutants such as CO and NO, suggesting that elevated nighttime HONO concentrations in the western end of the Los Angeles basin may be influenced by emissions of HONO from combustion sources. This has significant implications for models which assume HONO arises only from secondary formation, rather than a combination of direct emissions and atmospheric reactions. Estimates of hydroxyl (OH) radical production show that photolysis of HONO shortly after sunrise on these episode days produces a large pulse of OH radicals at a time of the day when OH production from photolysis of O3 and HCHO is low. In terms of integrated OH radical production, HONO is of comparable importance to HCHO and much more important than O3 during these Fall periods.  相似文献   

16.
合成了具有钙钛石ABO3结构的LaNiO3和La0.1Sr0.9NiO3及具有类钙钛石A2BO4结构的La2NiO4和LaSrNiO4等四个Ni系复合氧化物催化剂.研究了该系列复合氧化物的晶体结构,缺陷结构,B位Ni离子的价态,氧化还原性能及对NO分子的吸附性能等固态物化性质.考察了它们对NO+CO反应的催化性能,并与NO直接分解进行了对比研究.探讨了结构因素对Ni系复合氧化物催化剂的固态物化性质及催化性能的影响.提出了NO+CO反应的反应机理.  相似文献   

17.
Through the use of simultaneous thermogravimetry modulated beam mass spectrometry, optical microscopy, hot-stage time-lapsed microscopy, and scanning electron microscopy measurements, the physical and chemical processes that control the thermal decomposition of 1,3,5-trinitrohexahydro-s-triazine (RDX) below its melting point (160-189 degrees C) have been identified. Two gas-phase reactions of RDX are predominant during the early stages of an experiment. One involves the loss of HONO and HNO and leads to the formation of H2O, NO, NO2, and oxy-s-triazine (OST) or s-triazine. The other involves the reaction of NO with RDX to form NO2 and 1-nitroso-3,5-dinitrohexahydro-s-triazine (ONDNTA), which subsequently decomposes to form a set of products of which CH2O and N2O are the most abundant. Products from the gas-phase RDX decomposition reactions, such as ONDNTA, deposit on the surface of the RDX particles and lead to the development of a new set of reaction pathways that occur on the surface of the RDX particles. The initial surface reactions occur on surfaces of those RDX particles in the sample that can accumulate the greatest amount of products from the gas-phase reactions. Initial surface reactions are characterized by the formation of islands of reactivity on the RDX surface and lead to the development of an orange-colored nonvolatile residue (NVR) film on the surface of the RDX particles. The NVR film is most likely formed via the decomposition of ONDNTA on the surface of the RDX particles. The NVR film is a nonstoichiometric and dynamic material, which reacts directly with RDX and ONDNTA, and is composed of remnants from RDX and ONDNTA molecules that have reacted with the NVR. Reactions involving the NVR become dominant during the later stage of the decomposition process. The NVR reacts with RDX to form ONDNTA via abstraction of an oxygen atom from an NO2 group. ONDNTA may undergo rapid loss of N2 and NO2 with the remaining portion of the molecule being incorporated into the dynamic NVR. The dynamic NVR also decomposes and leads to the formation of H2O, CH2O, N2O, NH2CHO, (CH3)2NCHO, (CH3)2NNO, C2H2N2O, and (CH3)3N or CH3NCH2CH3. The competition between reaction of the dynamic NVR with RDX and its own thermal decomposition manifests itself in a rapid increase in the rate of evolution of the NVR decomposition products as the amount of RDX remaining in the sample nears depletion. The reactions between the NVR film and RDX on the surface of the RDX particles leads to a localized environment that creates a layer of molten RDX on the surface of the particles where reactions associated with the liquid-phase decomposition of RDX may occur. The combination of these reaction processes leads to an acceleration of the reaction rate in the later stage of the decomposition process and creates an apparent reaction rate behavior that has been referred to as autocatalytic in many previous studies of RDX decomposition. A reaction scheme summarizing the reaction pathways that contribute to the decomposition of RDX below its melting point is presented.  相似文献   

18.
The interaction of HONO with TiO(2) solid films was studied under dark conditions using a low pressure flow reactor (1-10 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The reactive uptake of HONO to TiO(2) was studied as a function of HONO concentration ([HONO)(0) = (0.3-3.3) × 10(12) molecules cm(-3)), water concentration (RH = 3 × 10(-4) to 13%), and temperature (T = 275-320 K). TiO(2) surface deactivation upon exposure to HONO was observed. The measured initial uptake coefficient of HONO on TiO(2) surface was independent of the HONO concentration and showed slight negative temperature dependence (activation factor = -1405 ± 110 K). In contrast, the relative humidity (RH) was found to have a strong impact on the uptake coefficient: γ(0) = 1.8 × 10(-5) (RH)(-0.63) (calculated using BET surface area, 40% uncertainty) at T = 300 K. NO(2) and NO were observed as products of the HONO reaction with TiO(2) surface with sum of their yields corresponding to nearly 100% of the nitrogen mass balance. The yields of the NO and NO(2) products were found to be 42 ± 7% and 60 ± 9%, respectively, independent of relative humidity, temperature, and concentration of HONO under experimental conditions used. The contribution of aerosol to the total HONO loss in the boundary layer (calculated with initial uptake data for HONO on TiO(2) surface) showed the unimportance of this process in the atmosphere. In addition, the diffusion coefficient of HONO in He was determined to be D(HONO-He) = 490 ± 50 Torr cm(2) s(-1) at T = 300 K.  相似文献   

19.
The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data.  相似文献   

20.
We have tested a new and general approach for the theoretical study of unimolecular decomposition. By combining the power of the ab initio molecular dynamics (MD) and ab initio molecular orbital (MO) methods, our approach requires no prior experimental knowledge or intuitive assumptions about the decomposition. Instead, the reaction channels are first sampled theoretically by simulating a molecule at high temperature in a number of trajectories, using the density functional theory (DFT) based ab initio MD method with a planewave basis set and pseudopotentials. Each type of these channels is then further examined by well-established ab initio MO method to locate the energy barrier and transition structure and to verify the ab initio MD results. The power of such an approach is demonstrated in a case study for the complicated unimolecular thermal decomposition of NTO (5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one), with several interesting new features uncovered. The C-NO2 homolysis is indeed the dominant channel at high temperature, while the departing NO2 could capture a H atom from the NTO ring to form HONO, by either a concerted bond breaking mechanism or by a bimolecular reaction between the NO2 group and the triazol ring. At lower temperature, the dissociation channels initiated by hydrogen migrations should be activated first. The channel with hydrogen migration followed by ring opening and then by HONO loss has an energy barrier of 38.0 kcal/mol at the rate-determining step, being the lowest among all the investigated dissociation paths and much lower than previously thought. The energy barrier for nitro-nitrite rearrangement is lower than that for the C-NO2 homolysis but makes only a minor contribution due to the entropy factor. And the NTO ring could rupture in the two C-N bonds connected to the carbonyl carbon, and the energy barriers for such processes are only 2-4 kcal/mol higher than that for the C-NO2 homolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号