首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Graphene, the two‐dimensional form of carbon presents outstanding electronic and transport properties. This gives hope for the development of applications in nanoelectronics. However, for industrial purpose, graphene has to be supported by a substrate. We focus here on the graphene‐on‐SiC system to discuss how the SiC substrate interacts with the graphene layer and to show the effect of the interface on graphene atomic and electronic structures.

  相似文献   


2.
We demonstrate a novel sensor type, which is based on the monolithic integration of luminescent optical sensor spots together with ring‐shaped thin‐film organic photodiodes on one substrate. The organic photodiodes serve as integrated fluorescence detectors, simplifying the detection system by minimizing the number of required optical components. The proposed concept enables filter‐less discrimination between excitation light and generated fluorescence light. The functionality of the concept is demonstrated by an integrated oxygen sensor, exhibiting excellent performance. The sensor spots are excited by an assembled organic light emitting diode. The integrated optical sensor platform is suitable for the parallel detection of multiple parameters. Sensor schemes for the analytical parameters carbon dioxide, temperature and ammonia, are proposed.

  相似文献   


3.
We have shown that nitrophenyl groups may be added to the surface of few‐layer epitaxial graphene (EG) by the formation of covalent carbon–carbon bonds thereby changing the electronic structure and transport properties of EG from near‐metallic to semiconducting. In the present Letter we discuss the opportunities afforded by such chemical processes to engineer device functionality in graphene by modification of the electronic properties without physical patterning.

  相似文献   


4.
The current–voltage characteristics and photoresponse of mesa structured {111}‐oriented homoepitaxial CVD diamond p(i)n‐junctions with different intrinsic layer thickness are investigated. When a sufficiently thick intrinsic layer is present, a rectification ratio of 108 at ±10 V could be obtained. Good rectifying diodes show a high photoresponse ratio between 210 nm (above bandgap) and 500 nm (below bandgap), making them suitable for UV detection purposes. The results are compared with similar measurements carried out on polycrystalline CVD diamond pn‐junctions.

  相似文献   


5.
The transport properties of the junction assembled by zigzag graphene nanoribbons (ZGNRs) and Au electrode (Au/ZGNR) are investigated using first‐principles calculations. It is found that the Au/ZGNR junction behaves as a typical diode with Schottky barrier at the contact. Our results indicate that although the oxidization at the contact slightly influences the Schottky barrier, the IV characteristic is effectively modulated. Such effect derives from the impact of the oxidization on the coupling between the ZGNRs and Au electrode.

  相似文献   


6.
We study the spin ordering of a quantum dot defined via magnetic barriers in an interacting quantum spin Hall edge. The spin‐resolved density–density correlation functions are computed. We show that strong electron interactions induce a ground state with a highly correlated spin pattern. The crossover from the liquid‐type correlations at weak interactions to the ground state spin texture found at strong interactions parallels the formation of a one‐dimensional Wigner molecule in an ordinary strongly interacting quantum dot.

  相似文献   


7.
As electronic operating frequencies increase toward the terahertz regime, new electrooptic modulators capable of low‐voltage high‐frequency operation must be developed to provide the necessary optical interconnects. This Letter presents a new concept that exploits modulation instability to compensate for the intrinsically weak electrooptic effect, χ(2). Simulations demonstrate more than 50 times enhancement of electrooptic effect at millimeter wave frequencies leading to a substantial reduction in the required modulation voltage.

  相似文献   


8.
Here, we demonstrate the synthesis of graphene on Ag foil by an atmospheric‐pressure (AP) chemical vapor deposition (CVD) process as tarnish‐resistant coating. Synthesis of a continuous graphene film on Ag foil is achieved using the solid camphor as carbon precursor in a gas mixture of Ar and H2. Tarnishing of the Ag surface through sulfidation is investigated with and without coating of the graphene film. It is observed that the bare Ag surface immediately reacts with sulfur vapor to turn black, whereas graphene coating passivates the Ag surface robustly and thereby restrains the sulfur reaction to preserve from tarnishing. Our findings show that a large‐area graphene film can be effectively grown on Ag surface by a CVD process as a tarnish and corrosion resistance barrier.

  相似文献   


9.
We demonstrate here a simple but very effective approach to decorate anodically grown TiO2 nanotubes (NTs) uniformly with CdS and PbS quantum dots (QDs) deep inside the NT walls. This approach is based on SILAR (successive ionic layer adsorption and reaction) technique assisted with evacuation of the NTs. The basic idea of evacuation is to remove air pockets trapped inside the NTs so as to clear the passage for the penetration of QD precursors down the bottom of the NTs.

  相似文献   


10.
A polymer nanohybrid material with enhanced dielectric permittivity was prepared using the fluorine‐containing polyimide (PI) 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride/4,4′‐oxydianiline (6FDA/ODA) as matrix and graphene as conductive filler in our present work. Studies on the dielectric properties of the 6FDA/ODA–graphene nanohybrid films show that the dielectric permittivity (ε) can be significantly enhanced by the layer‐by‐layer structure of graphene and the presence of fluorine also has an important influence on the improvement of ε. The percolation theory and microcapacitor model are used to explain the change of dielectric properties and a percolation threshold fc = 0.0152 (2.45 wt%) was obtained by a linear‐fit calculation.

  相似文献   


11.
A facile metal catalyst free route to synthesize boron doped (0.6%–1.0%) carbon nanotubes via ceramic nanowires in which the formation of the nanowires (probably serving as templates), the carbon nanotubes and their doping all occur unanimously in the reaction, is presented.

  相似文献   


12.
The Fe3O4(111)/graphene/Ni(111) trilayer is proposed to be used as an ideal spin‐filtering sandwich where the half‐metallic properties of magnetite are used. Thin magnetite layers on graphene/Ni(111) were prepared via successive oxidation of a thin iron layer predeposited on graphene/Ni(111) and the formed system was investigated by means of low‐energy electron diffraction and photoelectron spectroscopy. The electronic structure and structural quality of the graphene film sandwiched between two ferromagnetic layers remain unchanged upon magnetite formation as confirmed by experimental data.

  相似文献   


13.
Interaction between negatively charged Nafion® and a positively charged polybenzimidazole‐decorated carbon nanotube leads to the formation of an ionic complex with high charge density for proton conduction, which can lead to an improvement in transport properties. Here we investigate the high‐temperature and low‐humidity proton conductivity of this nanocomposite membrane as a potential membrane for fuel cell applications.

  相似文献   


14.
Polymer nanocomposites containing different concentrations of Au nanoparticles have been investigated by small angle X‐ray scattering and electronic absorption spectroscopy. The variation in the surface plasmon resonance (SPR) band of Au nanoparticles with concentration is described by a scaling law. The variation in the plasmon band of ReO3 nanoparticles embedded in polymers also follows a similar scaling law.

  相似文献   


15.
Angle‐resolved photoemission spectroscopy (ARPES) and X‐ray photoemission spectroscopy have been used to characterise epitaxially ordered graphene grown on copper foil by low‐pressure chemical vapour deposition. A short vacuum anneal to 200 °C allows observation of ordered low energy electron diffraction patterns. High quality Dirac cones are measured in ARPES with the Dirac point at the Fermi level (undoped graphene). Annealing above 300 °C produces n‐type doping in the graphene with up to 350 meV shift in Fermi level, and opens a band gap of around 100 meV.

  相似文献   


16.
The metastability of the bixbyite‐ and corundum‐type In2O3 polymorphs up to 33 GPa (at room temperature) is shown. While compressed (in diamond anvil cells) and laser‐heated, both polymorphs undergo a phase transition to the Rh2O3‐II‐type structure (space group Pbcn, No. 60). The direct transition from bixbyite to Rh2O3‐II structure has not yet been observed for any other oxide.

  相似文献   


17.
A new method for fabricating carbon nanotube‐conducting polymer (CNT‐CP) composite single nanowires is reported. The method developed is highly efficient, reliable, and economical because it obviates the time consuming process of template fabrication and the post‐synthesis task of positioning nanowires. Single nanowires with diameters of 50‐500 nm are fabricated between electrodes, self‐templated by dielectrophoresis and electropolymerization. Fabrication of an individually addressed nanowire array with cantilever electrodes on a microchip is demonstrated.

  相似文献   


18.
We propose a new allotrope of graphane (named as ‘tricycle') with equivalent 4up/2down UUUDUD hydrogenation in each six‐carbon ring, which can be considered as the combination of previously proposed 3up/3down chair graphane and stirrup graphane. We find that tricycle graphane is more stable than stirrup graphane and its negative Gibbs free energy (–91 meV/atom) is very close to that of the most stable chair one (–103 meV/atom). Investigations on its vibrational property confirm its dynamical stability. Such a new two‐dimensional hydrocarbon may be produced in the process of graphene hydrogenation with a relatively high probability due to its remarkable stability.

  相似文献   


19.
20.
By performing density functional theory calculations, we studied the quantum confinement in charged graphene quantum dots (GQDs), which is found to be clearly edge and shape dependent. It is found that the excess charges have a large distribution at the edges of the GQD. The resulting energy spectrum shift is very nonuniform and hence the Coulomb diamonds in the charge stability diagram vary irregularly, in good agreement with the observed nonperiodic Coulomb blockade oscillation. We also illustrate that the level statistics of the GQDs can be described by a Gaussian distribution, as predicted for chaotic Dirac billiards.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号