首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this paper an approach to construct algebraic multilevel preconditioners for serendipity finite element matrices is presented. Two‐level preconditioners constructed in the paper allow to obtain multilevel preconditioners in serendipity case using multilevel preconditioners for linear finite element matrices. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The numerical solution of elliptic selfadjoint second-order boundary value problems leads to a class of linear systems of equations with symmetric, positive definite, large and sparse matrices which can be solved iteratively using a preconditioned version of some algorithm. Such differential equations originate from various applications such as heat conducting and electromagnetics. Systems of equations of similar type can also arise in the finite element analysis of structures. We discuss a recursive method constructing preconditioners to a symmetric, positive definite matrix. An algebraic multilevel technique based on partitioning of the matrix in two by two matrix block form, approximating some of these by other matrices with more simple sparsity structure and using the corresponding Schur complement as a matrix on the lower level, is considered. The quality of the preconditioners is improved by special matrix polynomials which recursively connect the preconditioners on every two adjoining levels. Upper and lower bounds for the degree of the polynomials are derived as conditions for a computational complexity of optimal order for each level and for an optimal rate of convergence, respectively. The method is an extended and more accurate algebraic formulation of a method for nine-point and mixed five- and nine-point difference matrices, presented in some previous papers.  相似文献   

3.
There exist two main versions of preconditioners of algebraic multilevel type, the additive and the multiplicative methods. They correspond to preconditioners in block diagonal and block matrix factorized form, respectively. Both can be defined and analysed as recursive two-by-two block methods. Although the analytical framework for such methods is simple, for many finite element approximations it still permits the derivation of the strongest results, such as optimal, or nearly optimal, rate of convergence and optimal, or nearly optimal order of computational complexity, when proper recursive global orderings of node points have been used or when they are applied for hierarchical basis function finite element methods for elliptic self-adjoint equations and stabilized in a certain way. This holds for general elliptic problems of second order, independent of the regularity of the problem, including independence of discontinuities of coefficients between elements and of anisotropy. Important ingredients in the methods are a proper balance of the size of the coarse mesh to the finest mesh and a proper solver on the coarse mesh. This paper presents in a survey form the basic results of such methods and considers in particular additive methods. This method has excellent parallelization properties. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
We consider additive two‐level preconditioners, with a local and a global component, for the Schur complement system arising in non‐overlapping domain decomposition methods. We propose two new parallelizable local preconditioners. The first one is a computationally cheap but numerically relevant alternative to the classical block Jacobi preconditioner. The second one exploits all the information from the local Schur complement matrices and demonstrates an attractive numerical behaviour on heterogeneous and anisotropic problems. We also propose two implementations based on approximate Schur complement matrices that are cheaper alternatives to construct the given preconditioners but that preserve their good numerical behaviour. Through extensive computational experiments we study the numerical scalability and the robustness of the proposed preconditioners and compare their numerical performance with well‐known robust preconditioners such as BPS and the balancing Neumann–Neumann method. Finally, we describe a parallel implementation on distributed memory computers of some of the proposed techniques and report parallel performances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
U. Langer  D. Pusch  S. Reitzinger 《PAMM》2003,3(1):579-580
This paper presents new algebraic multigrid preconditioners for sparse representations of boundary element matrices which arise from the so‐called adaptive‐cross‐approximation to dense boundary element matrices resulting from the standard collocation, or Galerkin boundary element discretization of the single layer potential operator.  相似文献   

6.
1.IntroductionConsiderthesyllUnetricpositivedeflate(SPD)systemsoflinearequationsthatariseinfiniteelementdiscretisstionsofmanysecond-orderself-adjointellipticboundaryvalueproblems.Tosolvethisclassoflinearsystemsiteratively,AxelssonandVassilevski[1--4]preselltedthealgebraicmultileveliteration(AMLI)methodsbyreasonablyutilizingthemultigridtechniqueandthepolynomialaccelerationstrategy.Thesemethodsareamongthemostefficientiterativesolversbecausetheirpreconditioningmatricesarespectrallyequlvalellt…  相似文献   

7.
For the iterative solution of linear systems of equations arising from finite element discretization of elliptic problems there exist well-established techniques to construct numerically efficient and computationally optimal preconditioners. Among those, most often preferred choices are Multigrid methods (geometric or algebraic), Algebraic MultiLevel Iteration (AMLI) methods, Domain Decomposition techniques.In this work, the method in focus is AMLI. We extend its construction and the underlying theory over to systems arising from discretizations of parabolic problems, using non-conforming finite element methods (FEM). The AMLI method is based on an approximated block two-by-two factorization of the original system matrix. A key ingredient for the efficiency of the AMLI preconditioners is the quality of the utilized block two-by-two splitting, quantified by the so-called Cauchy-Bunyakowski-Schwarz (CBS) constant, which measures the abstract angle between the two subspaces, associated with the two-by-two block splitting of the matrix.The particular choice of space discretization for the parabolic equations, used in this paper, is Crouzeix-Raviart non-conforming elements on triangular meshes. We describe a suitable splitting of the so-arising matrices and derive estimates for the associated CBS constant. The estimates are uniform with respect to discretization parameters in space and time as well as with respect to coefficient and mesh anisotropy, thus providing robustness of the method.  相似文献   

8.
In this work we analyse a method to construct numerically efficient and computationally cheap sparse approximations of some of the matrix blocks arising in the block-factorized preconditioners for matrices with a two-by-two block structure. The matrices arise from finite element discretizations of partial differential equations. We consider scalar elliptic problems, however the approach is appropriate also for other types of problems such as parabolic problems or systems of equations. The technique is applicable for both selfadjoint and non-selfadjoint problems, in two as well as in three space dimensions. We analyse in detail the two-dimensional case and provide extensive numerical evidence for the efficiency of the proposed matrix approximations, both serial and parallel. Two- and three-dimensional tests are included.  相似文献   

9.
In this article we consider the stationary Navier‐Stokes system discretized by finite element methods which do not satisfy the inf‐sup condition. These discretizations typically take the form of a variational problem with stabilization terms. Such a problem may be transformed by iteration methods into a sequence of linear, Oseen‐type variational problems. On the algebraic level, these problems belong to a certain class of linear systems with nonsymmetric system matrices (“generalized saddle point problems”). We show that if the underlying finite element spaces satisfy a generalized inf‐sup condition, these problems have a unique solution. Moreover, we introduce a block triangular preconditioner and we show how the eigenvalue bounds of the preconditioned system matrix depend on the coercivity constant and continuity bounds of the bilinear forms arising in the variational problem. Finally we prove that the stabilized P1‐P1 finite element method proposed by Rebollo is covered by our theory and we show that the condition number of the preconditioned system matrix is independent of the mesh size. Numerical tests with 3D stationary Navier‐Stokes flows confirm our results. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006  相似文献   

10.
The electrical activity in the heart is governed by the bidomain equations. In this paper, we analyse an order optimal method for the algebraic equations arising from the discretization of this model. Our scheme is defined in terms of block Jacobi or block symmetric Gauss–Seidel preconditioners. Furthermore, each block in these methods is based on standard preconditioners for scalar elliptic or parabolic partial differential equations (PDEs). Such preconditioners can be realized in terms of multigrid or domain decomposition schemes, and are thus readily available by applying ‘off‐the‐shelves’ software. Finally, our theoretical findings are illuminated by a series of numerical experiments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we investigate the possibility of using a block‐triangular preconditioner for saddle point problems arising in PDE‐constrained optimization. In particular, we focus on a conjugate gradient‐type method introduced by Bramble and Pasciak that uses self‐adjointness of the preconditioned system in a non‐standard inner product. We show when the Chebyshev semi‐iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble–Pasciak method—the appropriate scaling of the preconditioners—is easily overcome. We present an eigenvalue analysis for the block‐triangular preconditioners that gives convergence bounds in the non‐standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
We consider saddle-point problems that typically arise from the mixed finite element discretization of second-order elliptic problems. By proper equivalent algebraic operations the considered saddle-point problem is transformed to another saddle-point problem. The resulting problem can then be efficiently preconditioned by a block-diagonal matrix or by a factored block-matrix (the blocks correspond to the velocity and pressure, respectively). Both preconditioners have a block on the main diagonal that corresponds to the bilinear form (δ is a positive parameter) and a second block that is equal to a constant times the identity operator. We derive uniform bounds for the negative and positive eigenvalues of the preconditioned operator. Then any known preconditioner for the above bilinear form can be applied. We also show some numerical experiments that illustrate the convergence properties of the proposed technique.  相似文献   

13.
We discuss a class of preconditioning methods for the iterative solution of symmetric algebraic saddle point problems, where the (1, 1) block matrix may be indefinite or singular. Such problems may arise, e.g. from discrete approximations of certain partial differential equations, such as the Maxwell time harmonic equations. We prove that, under mild assumptions on the underlying problem, a class of block preconditioners (including block diagonal, triangular and symmetric indefinite preconditioners) can be chosen in a way which guarantees that the convergence rate of the preconditioned conjugate residuals method is independent of the discretization mesh parameter. We provide examples of such preconditioners that do not require additional scaling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper discusses a class of multilevel preconditioners based on approximate block factorization for conforming finite element methods employing quadratic trial and test functions. The main focus is on diffusion problems governed by a scalar elliptic partial differential equation with a strongly anisotropic coefficient tensor. The proposed method provides a high robustness with respect to non‐grid‐aligned anisotropy, which is achieved by the interaction of the following components: (i) an additive Schur complement approximation to construct the coarse‐grid operator; (ii) a global block (Jacobi or Gauss–Seidel) smoother complementing the coarse‐grid correction based on (i); and (iii) utilization of an augmented coarse grid, which enhances the efficiency of the interplay between (i) and (ii). The performed analysis indicates the high robustness of the resulting two‐level method. Moreover, numerical tests with a nonlinear algebraic multilevel iteration method demonstrate that the presented two‐level method can be applied successfully in the recursive construction of uniform multilevel preconditioners of optimal or nearly optimal order of computational complexity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with boundary‐value methods (BVMs) for ordinary and neutral differential‐algebraic equations. Different from what has been done in Lei and Jin (Lecture Notes in Computer Science, vol. 1988. Springer: Berlin, 2001; 505–512), here, we directly use BVMs to discretize the equations. The discretization will lead to a nonsymmetric large‐sparse linear system, which can be solved by the GMRES method. In order to accelerate the convergence rate of GMRES method, two Strang‐type block‐circulant preconditioners are suggested: one is for ordinary differential‐algebraic equations (ODAEs), and the other is for neutral differential‐algebraic equations (NDAEs). Under some suitable conditions, it is shown that the preconditioners are invertible, the spectra of the preconditioned systems are clustered, and the solution of iteration converges very rapidly. The numerical experiments further illustrate the effectiveness of the methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space discretization we use the finite element method and utilize the two-by-two block structure of the matrices in the arising algebraic systems of equations. The Krylov subspace iterative methods are chosen to solve the linearized discrete systems and the development of computationally and numerically efficient preconditioners for the two-by-two block matrices is the main concern in this paper. In non-Newtonian flows, the viscosity is not constant and its variation is an important factor that affects the performance of some already known preconditioning techniques. In this paper we examine the performance of several preconditioners for variable viscosity applications, and improve them further to be robust with respect to variations in viscosity.  相似文献   

17.
Iterative methods of Krylov‐subspace type can be very effective solvers for matrix systems resulting from partial differential equations if appropriate preconditioning is employed. We describe and test block preconditioners based on a Schur complement approximation which uses a multigrid method for finite element approximations of the linearized incompressible Navier‐Stokes equations in streamfunction and vorticity formulation. By using a Picard iteration, we use this technology to solve fully nonlinear Navier‐Stokes problems. The solvers which result scale very well with problem parameters. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

18.
This paper is concerned with a numerical approach to the problem of finding the leftmost eigenvalues of large sparse nonsymmetric generalised eigenvalue problems which arise in stability studies of incompressible fluid flow problems. The matrices have a special block structure that is typical of mixed finite element discretizations for such problems. The numerical approach is an extension of the hybrid technique introduced by Saad [22] and utilizes the idea of preconditioning the eigenvalue problem before applying Arnoldi's method. Two preconditioners, one a modified Cayley transform, the other a Chebyshev polynomial transform, are compared in numerical experiments on a double diffusive convection problem and the Cayley transform proves superior. The Cayley transform is then used to provide numerical results for the finite Taylor problem.  相似文献   

19.
This paper considers a new approach to a priori sparsification of the sparsity pattern of the factorized approximate inverses (FSAI) preconditioner using the so‐called vector aggregation technique. The suggested approach consists in construction of the FSAI preconditioner to the aggregated matrix with a prescribed sparsity pattern. Then small entries of the computed ‘aggregated’ FSAI preconditioning matrix are dropped, and the resulting pointwise sparsity pattern is used to construct the low‐density block sparsity pattern of the FSAI preconditioning matrix to the original matrix. This approach allows to minimize (sometimes significantly) the construction costs of low‐density high‐quality FSAI preconditioners. Numerical results with sample matrices from structural mechanics and thin shell problems are presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
We construct, analyze, and implement SSOR‐like preconditioners for non‐Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew‐Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR‐like iteration methods as well as the corresponding preconditioned GMRES iteration methods. Numerical implementations show that Krylov subspace iteration methods such as GMRES, when accelerated by the SSOR‐like preconditioners, are efficient solvers for these classes of non‐Hermitian positive definite linear systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号