首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a second‐order finite difference scheme for approximating solutions of a mathematical model of erythropoiesis, which consists of two nonlinear partial differential equations and one nonlinear ordinary differential equation. We show that the scheme achieves second‐order accuracy for smooth solutions. We compare this scheme to a previously developed first‐order method and show that the first order method requires significantly more computational time to provide solutions with similar accuracy. We also compare this numerical scheme with other well‐known second‐order methods and show that it has better capability in approximating discontinuous solutions. Finally, we present an application to recovery after blood loss. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

2.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

3.
The Painlevé equations arise as reductions of the soliton equations such as the Korteweg–de Vries equation, the nonlinear Schrödinger equation and so on. In this study, we are concerned with numerical approximation of the asymptotics of solutions of the second Painlevé equation on pole‐free intervals along the real axis. Classical integrators such as high order Runge–Kutta schemes might be expensive to simulate oscillation, decay and blow‐up behaviours depending on initial conditions. However, a lower order functional fitting method catches all kinds of solutions even for relatively large step sizes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we propose a two‐level finite element method to analyze the approximate solutions of the stationary Navier‐Stokes equations based on a stabilized local projection. The local projection allows to circumvent the Babuska‐Brezzi condition by using equal‐order finite element pairs. The local projection can be used to stabilize high equal‐order finite element pairs. The proposed method combines the local projection stabilization method and the two‐level method under the assumption of the uniqueness condition. The two‐level method consists of solving a nonlinear equation on the coarse mesh and solving a linear equation on fine mesh. The nonlinear equation is solved by the one‐step Newtonian iteration method. In the rest of this article, we show the error analysis of the lowest equal‐order finite element pair and provide convergence rate of approximate solutions. Furthermore, the numerical illustrations coincide with the theoretical analysis expectations. From the view of computational time, the results show that the two‐level method is effective to solve the stationary Navier‐Stokes equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

5.
In this article, we primarily focuses to study the order‐reduction for the classical natural boundary element (NBE) method for the two‐dimensional (2D) hyperbolic equation in unbounded domain. To this end, we first build a semi‐discretized format about time for the hyperbolic equation and discuss the existence, stability, and convergence of the time semi‐discretized solutions. We then establish the classical fully discretized NBE format from the time semi‐discretized one and analyze the existence, stability, and convergence of the classical NBE solutions. Next, using proper orthogonal decomposition method, we build a reduced‐order extrapolated NBE (ROENBE) format containing very few unknowns but having adequately high accuracy, and we also discuss the existence, stability, and convergence of the ROENBE solutions. Finally, we use some numerical examples to show that the ROENBE method is far superior to the classical NBE one. It shows that the ROENBE method is reliable and effective for solving the 2D hyperbolic equation with the unbounded domain.  相似文献   

6.
In this article, we propose an iterative method based on the equation decomposition technique ( 1 ) for the numerical solution of a singular perturbation problem of fourth‐order elliptic equation. At each step of the given method, we only need to solve a boundary value problem of second‐order elliptic equation and a second‐order singular perturbation problem. We prove that our approximate solution converges to the exact solution when the domain is a disc. Our numerical examples show the efficiency and accuracy of our method. Our iterative method works very well for singular perturbation problems, that is, the case of 0 < ε ? 1, and the convergence rate is very fast. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

7.
We consider the fully parity‐time (PT) symmetric nonlocal (2 + 1)‐dimensional nonlinear Schrödinger (NLS) equation with respect to x and y. By using Hirota's bilinear method, we derive the N‐soliton solutions of the nonlocal NLS equation. By using the resulting N‐soliton solutions and employing long wave limit method, we derive its nonsingular rational solutions and semi‐rational solutions. The rational solutions act as the line rogue waves. The semi‐rational solutions mean different types of combinations in rogue waves, breathers, and periodic line waves. Furthermore, in order to easily understand the dynamic behaviors of the nonlocal NLS equation, we display some graphics to analyze the characteristics of these solutions.  相似文献   

8.
In this article, the Exp‐function method is applied to nonlinear Burgers equation and special fifth‐order partial differential equation. Using this method, we obtain exact solutions for these equations. The method is straightforward and concise, and its applications are promising. This method can be used as an alternative to obtain analytical and approximate solutions of different types of nonlinear differential equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

9.
In this paper, we present an application of some known generalizations of the Exp‐function method to the fifth‐order Burgers and to the seventh‐order Korteweg de Vries equations for the first time. The two examples show that the Exp‐function method can be an effective alternative tool for explicitly constructing rational and multi‐wave solutions with arbitrary parameters to higher order nonlinear evolution equations. Being straightforward and concise, as pointed out previously, this procedure does not require the bilinear representation of the equation considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, we study an explicit scheme for the solution of sine‐Gordon equation when the space discretization is carried out by an overlapping multidomain pseudo‐spectral technique. By using differentiation matrices, the equation is reduced to a nonlinear system of ordinary differential equations in time that can be discretized with the explicit fourth‐order Runge–Kutta method. To achieve approximation with high accuracy in large domains, the number of space grid points must be large enough. This yields very large and full matrices in the pseudo‐spectral method that causes large memory requirements. The domain decomposition approach provides sparsity in the matrices obtained after the discretization, and this property reduces storage for large matrices and provides economical ways of performing matrix–vector multiplications. Therefore, we propose a multidomain pseudo‐spectral method for the numerical simulation of the sine‐Gordon equation in large domains. Test examples are given to demonstrate the accuracy and capability of the proposed method. Numerical experiments show that the multidomain scheme has an excellent long‐time numerical behavior for the sine‐Gordon equation in one and two dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we consider a nonhomogeneous space‐time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the first‐order or second‐order time derivative by the Caputo fractional derivative , α > 0 and the Laplacian operator by the fractional Laplacian ( ? Δ)β ∕ 2, β ∈ (0,2]. We discuss and derive the analytical solutions under nonhomogeneous Dirichlet and Neumann boundary conditions by using the method of separation of variables. The obtained solutions are expressed through multivariate Mittag‐Leffler type functions. Special cases of solutions are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The Hirota bilinear method is a powerful tool for solving nonlinear evolution equations. Together with the linear superposition principle, it can be used to find a special class of explicit solutions that correspond to complex eigenvalues of associated characteristic problems. These solutions are known as complexiton solutions or simply complexitons. In this article, we study complexiton solutions of the the Hirota‐Satsuma‐Ito equation which is a (2 + 1)‐dimensional extension of the Hirota‐Satsuma shallow water wave equation known to describe propagation of unidirectional shallow water waves. We first construct hyperbolic function solutions and consequently derive the so‐called complexitons via the Hirota bilinear method and the linear superposition principle. In particular, we find nonsingular complexiton solutions to the Hirota‐Satsuma‐Ito equation. Finally, we give some illustrative examples and a few concluding remarks.  相似文献   

13.
In this paper,we applied the Painlevé property test on Krook‐Wu model of the nonlinear Boltzmann equation (p = 1). As a result, by using Bäcklund transformation, we obtained three solutions two of them were known earlier, while the third one is new and more general, we have also two reductions one of them is Abel's equation. Also, Lie‐group method is applied to the (p + 1)th Boltzmann equation. The complete Lie algebra of infinitesimal symmetries is established. Three nonequivalent sub‐algebraic of the complete Lie algebra are used to investigate similarity solutions and similarity reductions in the form of nonlinear ordinary equations for (p + 1)th Boltzmann equation; we obtained two general solutions for (p + 1)th Boltzmann equation and new solutions for Krook‐Wu model of Boltzmann equation (p = 1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we investigate exact traveling wave solutions of the fourth‐order nonlinear Schrödinger equation with dual‐power law nonlinearity through Kudryashov method and (G'/G)‐expansion method. We obtain miscellaneous traveling waves including kink, antikink, and breather solutions. These solutions may be useful in the explanation and understanding of physical behavior of the wave propagation in a highly dispersive optical medium. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The Hirota bilinear method is prepared for searching the diverse soliton solutions for the fractional generalized Calogero‐Bogoyavlenskii‐Schiff‐Bogoyavlensky‐Konopelchenko (CBS‐BK) equation. Also, the Hirota bilinear method is used to finding the lump and interaction with two stripe soliton solutions. Interaction among lumps, periodic waves, and multi‐kink soliton solutions will be investigated. Also, the solitary wave, periodic wave, and cross‐kink wave solutions will be examined for the fractional gCBS‐BK equation. The graphs for various fractional order α are plotted to contain 3D plot, contour plot, density plot, and 2D plot. We construct the exact lump and interaction among other types solutions, by solving the under‐determined nonlinear system of algebraic equations for the associated parameters. Finally, analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed. The existence conditions are employed to discuss the available got solutions.  相似文献   

16.
A sufficient condition for blowup of solutions to a class of pseudo‐parabolic equations with a nonlocal term is established in this paper. In virtue of the potential wells method, we first extend the results obtained by Xu and Su in [J. Funct. Anal., 264 (12): 2732‐2763, 2013] to the nonlocal case and describe successfully the behavior of solutions by using the energy functional, Nehari functional, and the ground state energy of the stationary equation. Sequently, we study the boundedness and convergency of any global solution. Finally, we achieve a criterion to guarantee the blowup of solutions without any limit of the initial energy.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The cubic B‐spline collocation scheme is implemented to find numerical solution of the generalized Burger's–Huxley equation. The scheme is based on the finite‐difference formulation for time integration and cubic B‐spline functions for space integration. Convergence of the scheme is discussed through standard convergence analysis. The proposed scheme is of second‐order convergent. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are compared with other results given in literature. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

18.
We use a particle method to study a Vlasov‐type equation with local alignment, which was proposed by Sebastien Motsch and Eitan Tadmor [J. Statist. Phys., 141(2011), pp. 923‐947]. For N‐particle system, we study the unconditional flocking behavior for a weighted Motsch‐Tadmor model and a model with a “tail”. When N goes to infinity, global existence and stability (hence uniqueness) of measure valued solutions to the kinetic equation of this model are obtained. We also prove that measure valued solutions converge to a flock. The main tool we use in this paper is Monge‐Kantorovich‐Rubinstein distance.  相似文献   

19.
We propose a nonintrusive reduced‐order modeling method based on the notion of space‐time‐parameter proper orthogonal decomposition (POD) for approximating the solution of nonlinear parametrized time‐dependent partial differential equations. A two‐level POD method is introduced for constructing spatial and temporal basis functions with special properties such that the reduced‐order model satisfies the boundary and initial conditions by construction. A radial basis function approximation method is used to estimate the undetermined coefficients in the reduced‐order model without resorting to Galerkin projection. This nonintrusive approach enables the application of our approach to general problems with complicated nonlinearity terms. Numerical studies are presented for the parametrized Burgers' equation and a parametrized convection‐reaction‐diffusion problem. We demonstrate that our approach leads to reduced‐order models that accurately capture the behavior of the field variables as a function of the spatial coordinates, the parameter vector and time. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

20.
In this paper, we employ the complex method to obtain first all meromorphic solutions of an auxiliary ordinary differential equation and then find all meromorphic exact solutions of the classical Korteweg–de Vries equation, Boussinesq equation, ( 3 + 1)‐dimensional Jimbo–Miwa equation, and Benjamin–Bona–Mahony equation. Our results show that the method is more simple than other methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号