首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An easy synthetic procedure for soluble poly[3‐(4‐alcoxyphenyl)thiophene]s is reported. The polymers present a high regioregularity degree as determined by both UV–vis spectra and 1H and 13C NMR analysis. Furthermore, X‐ray powder diffraction analysis performed on films of the polymers suggests a π‐stacked packing structure of the macromolecules. Electrical characterization was performed on one of the synthesized polythiophenes on both undoped and doped (with FeCl3 or iodine) films. The conductivity and charge‐carrier mobility were assessed by current–voltage and field effect measurements. Well‐structured polymer films were obtained simply via spin coating from chloroform solutions and without the need of further processing, unlike other regioregular polythiophenes reported in the literature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1758–1770, 2007  相似文献   

2.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

4.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Novel naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) and diketopyrrolopyrrole (DPP)‐containing donor‐acceptor conjugated polymers (PNDTDPPs) with different branched side chains were synthesized via Pd(0)‐catalyzed Stille coupling reaction. Octyldodecyl (OD) and dodecylhexadecyl (DH) groups were tethered to the DPP units as the side chains. The soluble fraction of PNDTDPP‐OD polymer in chloroform has much lower molecular weight than that of PNDTDPP‐DH polymer. PNDTDPP‐DH polymer bearing relatively longer DH side chains exhibited much better charge‐transport behavior than PNDTDPP‐OD polymer with shorter OD side chains. The thermally annealed PNDTDPP‐DH polymer thin films exhibited an outstanding charge carrier mobility of ~1.32 cm2 V?1 s?1 (Ion/Ioff ~ 108) measured under ambient conditions, which is almost six times higher than that of thermally annealed PNDTDPP‐OD polymer thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5280–5290  相似文献   

6.
Two novel porphyrin‐based D‐A conjugated copolymers, PFTTQP and PBDTTTQP , consisting of accepting quinoxalino[2,3‐b′]porphyrin unit and donating fluorene or benzo[1,2‐b:4,5‐b′]dithiophene unit, were synthesized, respectively via a Pd‐catalyzed Stille‐coupling method. The quinoxalino[2,3‐b′]porphyrin, an edge‐fused porphyrin monomer, was used as a building block of D‐A copolymers, rather than the simple porphyrin unit in conventional porphyrin‐based photovoltaic polymers reported in literature, to enhance the coplanarity and to extend the π‐conjugated system of polymer main chains, and consequently to facilitate the intramolecular charge transfer (ICT). The thermal stability, optical, and electrochemical properties as well as the photovoltaic characteristics of the two polymers were systematically investigated. Both the polymers showed high hole mobility, reaching 4.3 × 10?4 cm2 V?1 s?1 for PFTTQP and 2.0 × 10?4 cm2 V?1 s?1 for PBDTTTQP . Polymer solar cells (PSCs) made from PFTTQP and PBDTTTQP demonstrated power conversion efficiencies (PCEs) of 2.39% and 1.53%, both of which are among the highest PCE values in the PSCs based on porphyrin‐based conjugated polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

7.
Two alternating poly[3‐(hex‐1‐enyl)thiophene‐co‐thiophene]s, Pa (with 77% trans‐isomer and 23% cis‐isomer) and Pb (with 100% trans‐isomer), were synthesized by the coupling of 2,5‐dibromo‐3‐hex‐1‐enyl‐thiophene to 2,5‐bis(tributylstannyl)thiophene via a Stille reaction and compared with poly(3‐hexylthiophene‐co‐thiophene) ( P1 ) to study the effect of changing the carbon(α)–carbon(β) single bond into a carbon–carbon double bond on the properties of the polymers. From P1 to Pb and to Pa , the ultraviolet–visible absorption peaks of the polymers were slightly redshifted, and their electrochemical bandgaps decreased by 0.05–0.1 eV. X‐ray diffraction analysis indicated that Pa had a better lamellar structure than Pb . The hole mobilities of the three polymers, determined with the space‐charge‐limited current model, were 5.23 × 10?6 ( P1 ), 2.34 × 10?4 ( Pb ), and 7.02 × 10?4 cm2/V s ( Pa ). The power conversion efficiencies (PCEs) of polymer solar cells based on the three polymers were 0.87 ( P1 ), 1.16 ( Pb ), and 1.70% ( Pa ). The increase in the hole mobility and PCE revealed the important effect of changing the carbon(α)–carbon(β) single bond into a carbon–carbon double bond on the properties of polythiophene derivatives containing 3‐alkylthiophene. The strategy used in this work enlarges the thinking to obtain novel, efficient donor polymers for optoelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 629–638, 2007  相似文献   

8.
2,2,6,6‐Tetramethyl‐1‐piperidinyloxy (TEMPO)‐ and 2,2,5,5‐tetramethyl‐1‐pyrrolidinyloxy (PROXYL)‐containing (R)‐1‐methylpropargyl TEMPO‐4‐carboxylate ( 1 ), (R)‐1‐methylpropargyl PROXYL‐3‐carboxylate ( 2 ), (rac)‐1‐methylpropargyl PROXYL‐3‐carboxylate ( 3 ), (S)‐1‐propargylcarbamoylethyl TEMPO‐4‐carboxylate ( 4 ), and (S)‐1‐propargyloxycarbonylethyl TEMPO‐4‐carboxylate ( 5 ) (TEMPO, PROXYL) were polymerized to afford novel polymers containing the TEMPO and PROXYL radicals at high densities. Monomers 1–3 and 5 provided polymers with moderate number‐average molecular weights of 8200–140,900 in 49–97% yields in the presence of (nbd)Rh+[η6‐C6H5B?(C6H5)3], whereas 4 gave no polymer with this catalyst but gave polymers possessing low Mn (3800–7500) in 56–61% yield with [(nbd)RhCl]2‐Et3N. Poly( 1 ), poly( 2 ), and poly( 4 ) took a helical structure with predominantly one‐handed screw sense in THF and CHCl3 as well as in film state. The helical structure of poly( 1 ) and poly( 2 ) was stable upon heating and addition of MeOH, whereas poly( 4 ) was responsive to heat and solvents. All of the free radical‐containing polymers displayed the reversible charge/discharge processes, whose capacities were in a range of 43.2–112 A h/kg. In particular, the capacities of poly( 2 )–poly( 5 )‐based cells reached about 90–100% of the theoretical values regardless of the secondary structure of the polymer, helix and random. Poly( 1 ), poly( 2 ), and poly( 4 ) taking a helical structure exhibited better capacity tolerance towards the increase of current density than nonhelical poly( 3 ) and poly( 5 ) did. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5431–5445, 2007  相似文献   

9.
A series of novel branched polythiophene derivatives bearing different densities of vinylene‐bridges as linking chains were synthesized by a general synthetic strategy. The organic field‐effect transistors, which were fabricated by spin‐coating the polymer solutions onto octadecyltrichlorosilane‐modified SiO2/Si substrates with top‐contact configuration, afforded a high mobility of 8.0 × 10?3 cm2 V?1 s?1 with an on/off ratio greater than 104 and a threshold voltage of about ?3 V in saturation regime. The devices based on these polymers possessed better performance than those of polymers without conjugated bridges and polymers with longer conjugated bridges. These results demonstrated that the combination of conjugated polythiophene backbones and vinylene‐bridges would improve the carrier mobility. As an emerging class of conjugated materials, polymers with vinylene‐bridges as linking chains would open up new opportunities in organic electronics, and their applications in organic electronics are promising. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1381–1392, 2009  相似文献   

10.
New amorphous semiconducting copolymers, poly(9,9‐dialkylfluorene)‐alt‐(3‐dodecylthienyl‐divinylbenzene‐3‐dodecylthienyl) derivatives (PEFTVB and POFTVB), were designed, synthesized, and characterized. The structure of copolymers was confirmed by H NMR, IR, and elemental analysis. The copolymers showed very good solubility in organic solvents and high thermal stability with high Tg of 178–185 °C. The weight average molecular weight was found to be 107,900 with polydispersity of 3.14 for PEFTVB and 76,700 with that of 3.31 for POFTVB. UV–vis absorption studies showed the maximum absorption at 428 nm (in solution) and 435 nm (in film) for PEFTVB and at 430 nm (in solution) and 436 nm (in film) for POFTVB. Photoluminescence studies showed the emission at 498 nm (in solution) and 557 nm (in film) for PEFTVB and at 498 nm (in solution) and 536 nm (in film) for POFTVB. The solution‐processed thin‐film transistors showed the carrier mobility of 2 × 10?4 cm2 V?1 s?1 for PEFTVB‐based devices and 2 × 10?5 cm2 V?1 s?1 for POFTVB‐based devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3942–3949, 2010  相似文献   

11.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

12.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

13.
Synthesis, characterization, and polymer solar cell and transistor application of a series of phenanthro[1,2‐b:8,7‐b′]dithiophene‐based donor–acceptor (D–A)‐type semiconducting polymers combined with a diketopyrrolopyrrole unit are reported. The present polymers showed some unique features such as strong aggregation behavior, high thermal stability, and short π–π stacking distance (3.5–3.6 Å), which are suitable for high performance organic materials. In addition, they have a significantly extended absorption up to 1000 nm with a band gap of ca. 1.2 eV. However, such strong intermolecular interaction reduced their solubility and molecular weights, which resulted in low crystalline nature and moderate field‐effect mobility of 0.01 cm2 V?1 s?1. Furthermore, such strong aggregation behavior led to the large‐scale phase separation in the blend films, which may prevent the effective photocurrent generation, limiting Jsc and power conversion efficiency of 2.0%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 709–718  相似文献   

14.
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506  相似文献   

15.
A novel conjugated polymer, poly(thienylene‐vinylene‐thienylene) with cyano substituent ( CN‐PTVT ) was synthesized via Stille coupling for the application in air stable field‐effect transistor and polymer solar cell. The polymer was characterized by 1H NMR, elemental analysis, UV‐vis absorption and photoluminescence spectroscopy, TGA, cyclic voltammetry and XRD analysis. CN‐PTVT exhibits a good thermal stability with 5% weight loss at 306 °C. The FET hole mobility of the polymer reached 5.9 × 10?3 cm2 V?1 s?1 with Ion/Ioff ratio of 4.9 × 104, which is one of the highest performance among the air‐stable amorphous polymers. The polymer solar cell based on CN‐PTVT as donor and PCBM as acceptor shows a relatively high open‐circuit voltage of 0.82 V and a power conversion efficiency of 0.3% under the illumination of AM1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4028–4036, 2009  相似文献   

16.
The synthesis of arborescent polymers with poly(γ‐benzyl L‐glutamate) (PBG) side chains was achieved through successive grafting reactions. The linear PBG building blocks were produced by the ring‐opening polymerization of γ‐benzyl L‐glutamic acid N‐carboxyanhydride initiated with n‐hexylamine. The polymerization conditions were optimized to minimize the loss of amino chain termini in the reaction. Acidolysis of a fraction of the benzyl groups on a linear PBG substrate and coupling with linear PBG using a carbodiimide/hydroxybenzotriazole promoter system yielded a comb‐branched or generation zero (G0) arborescent PBG. Further partial deprotection and grafting cycles led to arborescent PBG of generations G1 to G3. The solvent used in the coupling reaction had a dramatic influence on the yield of graft polymers of generations G1 and above, dimethylsulfoxide being preferable to N,N‐dimethylformamide. This grafting onto scheme yielded well‐defined (Mw/Mn ≤ 1.06), high molecular weight arborescent PBG in a few reaction cycles, with number‐average molecular weights and branching functionalities reaching over 106 and 290, respectively, for the G3 polymer. α‐Helix to coiled conformation transitions were observed from N,N‐dimethylformamide to dimethyl sulfoxide solutions, even for the highly branched polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5270–5279  相似文献   

17.
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545  相似文献   

18.
Four new conjugated copolymers based on the moiety of bis(4‐hexylthiophen‐2‐yl)‐6,7‐diheptyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline (BTHTQ) were synthesized and characterized, including poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) (PBTHTQ), poly‐(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo‐[3,4‐g]quinoxaline‐alt‐2,5‐thiophene) (PTTHTQ), poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl) [1,2,5]‐thiadiazolo‐[3,4‐g]quinoxaline‐alt‐9,9‐dioctyl‐2,7‐fluore‐ne) (PFBTHTQ), and poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline‐alt‐1,4‐bis(decyloxy)phenylene) (PPBTHTQ). The λmax of PBTHTQ, PTTHTQ, PFBTHTQ, and PPBTHTP thin films was shown at 780, 876, 734, and 710 nm, respectively, with the corresponding optical band gaps (E) of 1.31, 1.05, 1.40, and 1.43 eV. The relatively small band gaps of the synthesized polymers suggested the significance of intramolecular charge transfer between the donor and TQ moiety. The estimated hole mobilities of PBTHTQ, PTTHTQ, and PFBTHTQ‐based field effect transistor devices using CHCl3 solvent were 8.5 × 10?5, 8.5 × 10?4, and 2.8 × 10?5 cm2 V?1 s?1, respectively, but significantly enhanced to 1.6 × 10?4, 3.8 × 10?3, and 1.5 × 10?4 cm2 V?1 s?1 using high boiling point solvent of chlorobenzene (CB). The higher hole mobility of PTTHTQ than the other two copolymers was attributed from its smaller band gap or ordered morphology [wormlike (chloroform) or needle‐like (CB)]. The characteristics of small band gap and high mobility suggest the potential applications of the BTHTQ‐based conjugated copolymers in electronic and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6305–6316, 2008  相似文献   

19.
A series of 1‐chloro‐2‐arylacetylenes [Cl‐C?C‐Ar, Ar = C6H5 ( 1 ), C6H4pi Pr ( 2 ), C6H4p‐Oi Pr ( 3 ), C6H4p‐NHC(O)Ot Bu ( 4 ), and C6H4oi Pr ( 5 )] were polymerized using (tBu3P)PdMeCl/silver trifluoromethanesulfonate (AgOTf) and MoCl5/SnBu4 catalysts. The corresponding polymers [poly( 1 )–poly( 5 )] with weight‐average molecular weights of 6,500–690,000 were obtained in 10–91% yields. THF‐insoluble parts, presumably high‐molecular weight polymers, were formed together with THF‐soluble polymers by the Pd‐catalyzed polymerization. The Pd catalyst polymerized nonpolar monomers 1 and 2 to give the polymers in yields lower than the Mo catalyst, while the Pd catalyst polymerized polar monomers 3 and 4 to give the corresponding polymers in higher yields. The 1H NMR and UV–vis absorption spectra of the polymers indicated that the cis‐contents of the Pd‐based polymers were higher than those of the Mo‐based polymers, and the conjugation length of the Pd‐based polymers was shorter than that of the Mo‐based polymers. Pd‐based poly( 5 ) emitted fluorescence most strongly among poly( 1 )–poly( 5 ). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 382–388  相似文献   

20.
A series of new phenothiazine‐based donor–acceptor copolymers, P1 and P2, were synthesized via a Suzuki coupling reaction. The weight‐averaged molecular weights (Mw) of P1 and P2 were found to be 16,700 and 16,100, with polydispersity indices of 1.74 and 1.39, respectively. The UV–visible absorption spectra of the polymer thin films contained three strong absorption bands in the ranges 318–320 nm, 430–436 nm, and 527–568 nm. The absorption peaks at 320 and 430 nm originated mainly from the phenothiazine‐based monomer units, and the longer wavelength absorption band at 527–568 nm was attributed to the increased effective conjugation length of the polymer backbones. Solution‐processed field‐effect transistors fabricated with these polymers exhibited p‐type organic thin film transistor characteristics. The field‐effect mobilities of P1 and P2 were measured to be 1.0 × 10?4 and 7.5 × 10?5 cm2 V?1 s?1, respectively, with on/off ratios in the order of 104 for all polymers. A photovoltaic device in which a P2/PC71BM (1/3) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.70 V, a short‐circuit current (JSC) of 6.79 mA cm(2, a fill factor of 0.39, and a power conversion efficiency of 1.86% under AM 1.5 G (100 mW cm?2) illumination. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号