首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We present metal wrap through (MWT) silicon solar cells with passivated surfaces based on a simplified device structure. This so‐called HIP‐MWT structure (high‐performance metal wrap through) does not exhibit an emitter on the rear side and therefore simplifies processing. The confirmed peak efficiency of the fabricated solar cells with an edge length of 125 mm, screen printed contacts and solder pads is 20.2%. To our knowledge, this is the highest value reported for large‐area p‐type silicon solar cells to date.

  相似文献   


2.
Twinning in a CuInS2 layer in a completed thin‐film solar cell was analyzed by means of electron backscatter diffraction. This technique revealed the microstructure of the CuInS2 thin films and local orientation relationships between the grains. At various locations within the layer it was possible to retrace how twinning occurred comparing the local orientations with the theoretically possible changes in orientation by twinning. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


3.
By means of first‐principles calculations we predict the stability of silicene as buckled honeycomb lattice on passivated substrates of group‐IV(111)1 × 1 surfaces. The weak van‐der‐Waals interaction between silicene and substrates does not destroy its linear bands forming Dirac cones at the Brillouin zone corners. Only very small fundamental gaps are opened around the Fermi level.

  相似文献   


4.
We demonstrate the fabrication of a solid state heterojunction photovoltaic device with solution‐processed graphene oxide (GO) and n‐Si. Partially reduced GO with a high optical gap (2.8 eV) was spin‐coated on the n‐Si substrate and a heterojunction device was fabricated with the structure of Au/pr‐GO/n‐Si. In the fabricated device, incident light was transmitted through the thin GO film to reach the junction interface, generating photoexciton, and thereby a photovoltaic action was observed. By means of a built‐in electric potential at the GO/n‐Si junction, photoexcited electrons and holes can be separated, transported and collected at the electrodes.

  相似文献   


5.
Write‐once–read‐many‐times memory (WORM) devices were fabricated using Ti/Au and Au as top contacts on ZnO thin films on Si. Electrical characterization shows that both types of WORM devices have large resistance OFF/ON ratio (R ratio), small resistance distribution range, long retention and good endurance. WORM devices with Au top contact have better performance of higher R ratio because of a larger work function of Au compared to Ti.

  相似文献   


6.
Nanostructures formed in a titanium dioxide (TiO2)–poly(styrene)‐block‐poly(ethyleneoxide) nanocomposite film on top of fluor‐doped tin oxide (FTO) layers are investigated. The combinatorial approach is based on probing a wedge‐shaped FTO‐gradient with grazing incidence small angle X‐ray scattering (GISAXS) in combination with a moderate micro‐focus X‐ray beam. The characteristic lateral length is given by adjacent nanowire‐shaped TiO2 regions. It decreases from 200 nm on the thick FTO layer to 90 nm on the bare glass surface.

  相似文献   


7.
A passive micro‐displacement sensor (for ~μm displacement) was fabricated based on a magnetoelectric laminate, in which the displacement change can result in a change of the magnetic flux around the magnetoelectric sensor. The displacement measurement was realized by measuring the magnetoelectric output voltage. The displacement detecting coefficient was ~2.5 mV/μm at a frequency of ~1 kHz. This passive displacement sensor possesses the advantages of low cost, high resolution, low energy consumption and good linearity and has potential for application in future displacement detectors.

  相似文献   


8.
Steady‐state and time‐resolved photoluminescence of silicon nanoparticles dispersed in low‐polar liquids at above room temperature is studied. The roles of low‐polar liquids as well as mechanisms responsible for their temperature‐dependent photoluminescence are discussed. The thermal sensitivity of the photoluminescence is estimated and application of the nanoparticles as nanothermometers is proposed.

  相似文献   


9.
We present a simplified process sequence for the fabrication of large area n‐type silicon solar cells. The boron emitter and full area phosphorus back surface field are formed in one single high temperature step using doped glasses deposited by plasma enhanced chemical vapour deposition (PECVD) as diffusion sources. By optimizing the gas composition during the PECVD process, we not only prevent the formation of a boron rich layer (BRL), but also achieve doping profiles that exhibit a low dark saturation current density while allowing for contact formation by screen printing. The presented co‐diffusion process allows for major process simplification compared to the state of the art diffusion process relying on multiple high temperature processes, masking and wet chemistry steps.

  相似文献   


10.
The growth, structural and optical characterisation of dilute nitride alloys of InSb grown by plasma‐assisted molecular beam epitaxy is presented. The layers were characterised by high‐resolution X‐ray diffraction indicating high crystalline quality and nitrogen incorporations up to 0.68%. Fourier‐transform infrared absorption measurements reveal the position of the absorption edge to be a result of the competing effects of bandgap reduction (due to nitrogen incorporation and bandgap renormalisation) and Moss–Burstein band filling.

  相似文献   


11.
A very thin (250 nm), highly conductive (annealed), non‐texturized DC‐sputtered aluminum‐doped zinc oxide layer (ZnO:Al) deposited on a textured glass is used as substrate for thin‐film silicon solar cells. Compared to the classical approach, where wet‐chemically texturized ZnO:Al on planar glass is used, this approach allows a reduction in the as‐deposited ZnO:Al thickness of almost 70% while at the same time, thanks to the good light trapping capability of the glass texture the efficiency of the cells was maintained at the high level of 10.9%.

  相似文献   


12.
Dip‐coating of a colloidal suspension is investigated in situ with microbeam grazing incidence small‐angle X‐ray scattering. We focus on the real‐time monitoring of a vertical dip‐coating process yielding insights into structural changes during pattern formation of the thin film. With the selected configuration a fixed spot on the sample surface is probed and the structural information at the time the contact line passes this spot is obtained, hence revealing the structure at the vicinity of the flowing meniscus owing to the microfocused beam. After dip‐coating the morphology is analyzed with atomic force microscopy, yielding real space information about the arrangement of individual nanoparticles at the film surface.

  相似文献   


13.
We report on solution‐processible polymer solar cells (PSCs) fabricated on a papery substrate using carton. Highly conductive PEDOT:PSS was used as a bottom anode and planarization layer, and a semi‐transparent top cathode was applied. This research could be an important approach to the development of all‐solution‐processible papery PSCs as well as paper electronics.

  相似文献   


14.
The Fe3O4(111)/graphene/Ni(111) trilayer is proposed to be used as an ideal spin‐filtering sandwich where the half‐metallic properties of magnetite are used. Thin magnetite layers on graphene/Ni(111) were prepared via successive oxidation of a thin iron layer predeposited on graphene/Ni(111) and the formed system was investigated by means of low‐energy electron diffraction and photoelectron spectroscopy. The electronic structure and structural quality of the graphene film sandwiched between two ferromagnetic layers remain unchanged upon magnetite formation as confirmed by experimental data.

  相似文献   


15.
Interaction between negatively charged Nafion® and a positively charged polybenzimidazole‐decorated carbon nanotube leads to the formation of an ionic complex with high charge density for proton conduction, which can lead to an improvement in transport properties. Here we investigate the high‐temperature and low‐humidity proton conductivity of this nanocomposite membrane as a potential membrane for fuel cell applications.

  相似文献   


16.
Here, we demonstrate the synthesis of graphene on Ag foil by an atmospheric‐pressure (AP) chemical vapor deposition (CVD) process as tarnish‐resistant coating. Synthesis of a continuous graphene film on Ag foil is achieved using the solid camphor as carbon precursor in a gas mixture of Ar and H2. Tarnishing of the Ag surface through sulfidation is investigated with and without coating of the graphene film. It is observed that the bare Ag surface immediately reacts with sulfur vapor to turn black, whereas graphene coating passivates the Ag surface robustly and thereby restrains the sulfur reaction to preserve from tarnishing. Our findings show that a large‐area graphene film can be effectively grown on Ag surface by a CVD process as a tarnish and corrosion resistance barrier.

  相似文献   


17.
We report the fabrication procedure and the characterization of an Al0.3Ga0.7As solar cell containing high‐density GaAs strain‐free quantum dots grown by droplet epitaxy. The production of photocurrent when two sub‐bandgap energy photons are absorbed simultaneously is demonstrated. The high quality of the quantum dot/barrier pair, allowed by the high quality of nanostructured strain‐free materials, opens new opportunities for quantum dot based solar cells.

  相似文献   


18.
We review the history of fully transparent oxide thin‐film transistors. Their performance and stability increased during the past ten years of their existence, thus enabling the design of novel applications in transparent electronics. However, certain disadvantages of the well established leading technology of metal–insulator–semiconductor field‐effect transistors (MISFETs), adapted from the silicon‐based complementary metal–oxide–semiconductor (CMOS) and thin‐film transistor technology, may be overcome by alternative transistor designs like metal–semiconductor field‐effect transistors (MESFETs). We compare the stability of published transparent MISFET with our transparent MESFET (TMESFET) technology against bias stress, towards illumination, at elevated temperatures and long‐term stability.

  相似文献   


19.
20.
Persistent layer‐by‐layer growth is demonstrated for pulsed‐laser homoepitaxy of ZnO thin films on $(000\bar 1)$ ZnO single crystals. Employing interval pulsed‐laser deposition (PLD), RHEED oscillations are stabilized over a film thickness of about 90 nm. For interval pulsed laser deposited films a considerably decreased root‐mean‐square surface roughness of 0.26 nm was found, in comparison to 0.74 nm for conventional PLD. A small asymmetry in the X‐ray diffraction (XRD) 2θω scan reveals compressive strain in the thin film being slightly larger for interval PLD as compared to conventional PLD. The FWHM of the photoluminescence (PL) I6 line is higher with about 500 µeV as compared to 350 µeV for the conventional PLD. Consequently, both XRD as well as PL indicate a slightly higher amount of charged defects for the interval PLD.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号