首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biodegradable polymers have currently attracted high interest as ideal carriers in drug delivery and tissue engineering applications. In situ forming devices based on these materials will synergistically provide the advantages of the customary prefabricated devices as well as ease of administration. To acheive these objectives, optically transparent and biodegradable macromers based on poly(ethylene glycol) and fumaric acid copolymers were synthesized using propylene oxide as a different proton scavenger to enhance in situ photocrosslinking capability. The macromers in different compositions were then photocured for 300 sec in the presence of a visible light initiator/accelerator couple and also a reactive diluent. Characterization of the macromers and the resulting networks were performed using different spectroscopic, chromatographic, physical, and thermal analysis techniques. The resulted shrinkage strain of the macromers upon photocuring was studied using the bounded disk technique, and initial shrinkage strain rates were obtained by numerical differentiation. Our results suggest that the compositions based on these unsaturated aliphatic polyesters are potentially useful to develop injectable, in situ photocrosslinkable carriers for drug and cell delivery applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In prostate cancer, hormone therapy via leuprolide acetate drug (LUP) is used to lower the level of testosterone down to castration level to effectively control the development of prostate cancer. The objective of this study was to evaluate the effective parameters in degradation and controlled release of an injectable in situ formed polymeric implant, loaded with leuprolide acetate, in order to achieve an optimum formulation for sustained drug release for 90 days with minimum burst release. The main problem associating with such implants is their high burst release. Designing an injectable implant with sustained and minimum burst release has thus become an attractive challenge in drug delivery field. Effects of type of poly(lactic‐co‐glycolic acid) 75:25 copolymers (RG752, RG756) and addition of nano‐hydroxyapatite (HA) particles on degradation rates of the implants and release profiles were examined in vitro and in vivo in a rabbit animal model. Results showed that implants containing polymers with higher molecular weights had significantly lower weight loss and molecular weight reduction. Adding nanoparticles of hydroxyapatite into poly(lactic‐co‐glycolic acid) implants caused further reduction in degradation rates, leading to a more sustained drug release in vivo, with reduced burst release. Different conventional kinetic models were applied to drug release and degradation data. The degradation data fit well to the first‐order degradation model. Higuchi model was the best kinetic release model fitted to the experimental in vitro release data. This study led to an optimum formulation (RG756:RG752 3:1 + 5% HA) with sustained leuprolide release and testosterone suppression over a 90‐day period with significant decrease of burst release phase (50%, p < 0.001) compared with the conventional Eligard formulation. The histopathology test showed that the formulated implant had no effects of toxicity or tissue necrosis in organs of the animal model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Biodegradable in situ forming drug delivery systems for naltrexone release are promising for post‐treatment of drug addicts. The effect of two different additives, glycerol and ethyl heptanoate, on the naltrexone hydrochloride release and solvent removal from a poly(DL ‐lactide‐co‐glycolide) (PLGA) injectable implant is presented in this article. The experimental results showed that the in vitro initial release of the drug was decreased in the presence of these additives. Ethyl heptanoate was, however, more effective than glycerol and increasing the amount of additives in PLGA solution up to 5% (w/w) resulted in a decrease of initial naltrexone release rate up to 50%. The morphological evaluation of implants using scanning electron microscopy indicated that the additives generated a less porous structure together with a finger‐like to sponge‐like transition. The solvent removal profiles of injectable implants, which can be well described by thermogravimetric and morphological analysis, were in good agreement with drug release profiles. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Repair and regeneration of bone defects with particular shape may be enhanced by in situ forming biomaterials which can be used in minimal invasive surgery. This study is aimed to prepare novel in situ forming biodegradable nanocomposites based on poly(3‐allyloxy‐1,2‐propylene) succinate (PSAGE) and nanosized hydroxyapatite (HA). These nanocomposite materials contain poly(ester‐anhydride) (PEA) microspheres embedded in a polyester matrix prepared by crosslinking PSAGE with oligo(1,2‐propylene maleate) and methacrylic monomers. Methyl methacrylate and one of hydrophilic oligo(ethylene glycol) methacrylates with different functionality and various length of oligooxyethylene chains were used as polymerizable diluents. Incorporation of microspheres which degrade faster than crosslinked polyester matrices enables formation of porous structure in situ. The obtained materials are liquid before curing and harden in several minutes with moderate exothermic effect. The effect of the composition of nanocomposite materials on selected properties, such as water sorption, mechanical strength, porosity and hydrolytic degradation process, was investigated. Rheological behavior and injectability of liquid formulations were studied. Analysis by energy dispersive spectroscopy confirmed the presence of characteristic features of HA in the nanocomposite materials. The morphology of the cured nanocomposites subjected to hydrolytic degradation was evaluated by scanning electron microscopy. The MTS cytotoxicity assay was carried out for extracts from crosslinked materials using hFOB1.19 cells. It was found that the extracts exhibit a dose‐dependent cytotoxic response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Olefinic thermoplastic elastomers can be prepared by incorporating semi‐crystalline macromonomers (e.g. isotactic or syndiotactic poly(propylene), high‐density polyethylene) onto amorphous backbones (e.g. atactic poly(propylene), ethylene/α‐olefin copolymers). The macromonomer incorporation reaction can be carried out in semi‐batch reactors by adding previously synthesized macromonomers to the reactor (ex situ approach), or by generating and incorporating the macromonomers in a single step (in situ approach). The differences in the microstructure of copolymers synthesized by in situ and ex situ techniques are explored herein through a mathematical model that can predict the concentration of linear and branched chains, their average molecular weights, polydispersity indices, and molecular weight distributions. In both cases linear chains predominate, but the ex situ approach produces a larger amount of branched chains with thermoplastic elastomer properties. Furthermore, for the in situ strategy, a significant amount of branched chains is only formed after the macromonomer concentration reaches a critical value.

Schematic representation of the polymerization mechanism.  相似文献   


6.
In this paper, several drug carriers were fabricated to release the hydrophilic 5‐fluorouracil (5‐Fu), such as blend of polylactide (PLA) with different molecular weights and blends of PLA with polycaprolactone (PCL) or poly(ethylene glycol) (PEG). The controlled release devices were processed into tablets containing 12.5 wt% of 5‐Fu, and the in vitro release studies were carried out under pH 7.4 at 37 ± 1 °C. The degradation of all the drug carriers were performed under the same conditions, parameters that changes of inherent viscosity, weight loss and water sorption were determined at predetermined time intervals with degradation. To inspect the morphology of the PLA‐based blends and its affect on the 5‐Fu release behavior thereof, scanning electron microscopy (SEM) and X‐ray diffraction techniques were applied. As a result, the two‐phasic release behavior of homo‐PLA was significantly ameliorated in all the cases by the initial time lag period being eliminated or shortened. And a linear 5‐Fu release behavior was obtained from blend of PLAs with different molecular weights. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrogels are promising for a variety of medical applications due to their high water content and mechanical similarity to natural tissues. When made injectable, hydrogels can reduce the invasiveness of application, which in turn reduces surgical and recovery costs. Key schemes used to make hydrogels injectable include in situ formation due to physical and/or chemical cross‐linking. Advances in polymer science have provided new injectable hydrogels for applications in drug delivery and tissue engineering. A number of these injectable hydrogel systems have reached the clinic and impact the health care of many patients. However, a significant remaining challenge is translating the ever‐growing family of injectable hydrogels developed in laboratories around the world to the clinic. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

8.
New degradable poly(ester anhydride)s were prepared by the melt polycondensation of diacid oligomers of poly(sebacic acid) (PSA) transesterified with ricinoleic acid. The transesterification of PSA with ricinoleic acid to form oligomers was conducted via a melt bulk reaction between a high molecular weight PSA and ricinoleic acid. A systematic study on the synthesis, characterization, degradation in vitro, drug release, and stability of these polymers was performed. Polymers with weight‐average molecular weights of 2000–60,000 and melting temperatures of 24–77 °C were obtained for PSA containing 20–90% (w/w) ricinoleic acid. NMR and IR analyses indicated the formation of ester bonds along the polyanhydride backbone. These new degradable copolymers have potential use as drug carriers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1059–1069, 2003  相似文献   

9.
In this work, zero‐valent iron (Fe(0)) (powder or wire) and elemental bromine (Br2) were used as the catalysts for atom transfer radical polymerization (ATRP) of styrene (St) without any additional initiator at 110 °C. The polymerizations happened with controlled evidence at appropriate molar ratio of Fe(0) to Br2: a remarkable increase of molecular weights with St conversions, the narrow molecular weight distributions and living polymer chains end‐capped by Br. More Br2 or less Fe(0) led to a slow polymerization rate but an improved control over molecular weights. After examining the polymer chain ends by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, it was concluded that the polymerization was initiated by thermal self‐initiation, and regulated by the in situ generated FeIIIBr3. The results suggested that the Fe(0)/Br2 catalyzing polymerization was a classical ATRP process with easier operation and more economical components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
We prepared 2,2‐dibutyl‐2‐stanna‐1,3‐dithiacycloalkanes from dibutyltin oxide and α,ω‐dimercaptoalkanes. Heterocycles with five‐, six‐, seven‐, or nine‐ring members were used as bifunctional monomers for polycondensations with aliphatic dicarboxylic acid chlorides. These polycondensations conducted in bulk were highly exothermic and yielded poly(thio ester)s with number average molecular weights (Mn's) in the range of 5000–30,000 Da. These poly(thio ester)s proved to be rapidly crystallizing materials with melting temperatures in the range of 90–150 °C. In addition to the success of the new synthetic approach, two interesting and unpredictable results were obtained. All volatile species detectable by matrix assisted laser desorption induced‐time of flight (MALDI‐TOF) mass spectrometry were cyclic oligo‐ and poly(thio ester)s. Second, several polyesters showed a reversible first‐order change of the crystal modification as identified by differential scanning calorimetry measurements and X‐ray scattering with variation of the temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3656–3664, 2000  相似文献   

11.
Poly(n‐butyl acrylate) macromonomers with predetermined molecular weights (1300 < number‐average molecular weight < 23,000) and low polydispersity indices (<1.2) were synthesized from bromine‐terminated atom transfer radical polymerization polymers via end‐group substitution with acrylic acid and methacrylic acid. These macromonomers, having a high degree of end‐group functionalization (>90%), were radically homopolymerized to obtain comb polymers. A high macromonomer concentration, combined with a low radical flux, was needed to obtain a high conversion of the macromonomers and a reasonable degree of polymerization. By the traditional radical copolymerization of the hydrophobic macromonomers with the hydrophilic monomer N,N‐dimethylaminoethyl methacrylate (DMAEMA), amphiphilic comb copolymers were obtained. The conversions of the macromonomers and comonomer were almost quantitative under optimized reaction conditions. The molecular weights were high (number‐average molecular weight ≈70,000), and the molecular weight distribution was broad (polydispersity index ≈ 3.5). Kinetic measurements showed simultaneous decreases in the macromonomer and DMAEMA concentrations, indicating a relatively homogeneous composition of the comb copolymers over the whole molecular weight range. This was supported by preparative size exclusion chromatography. The copolymerization of poly(n‐butyl acrylate) macromonomers with other hydrophilic monomers such as acrylic acid or N,N‐dimethylacrylamide gave comb copolymers with multimodal molecular weight distributions in size exclusion chromatography and extremely high apparent molecular weights. Dynamic light scattering showed a heterogeneous composition consisting of small (6–9 nm) and large (23–143 nm) particles, probably micelles or other type of aggregates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3425–3439, 2003  相似文献   

12.
The synthesis and characterization of novel poly(CTFE‐g‐oligoEO) graft copolymers [chlorotrifluoroethylene (CTFE) and ethylene oxide (EO)] are presented. First, vinyl ether monomers bearing oligo(EO) were prepared by transetherification of ω‐hydroxyoligo(EO) with ethyl vinyl ether catalyzed by a palladium complex in 70–84% yields. Two vinyl ethers of different molecular weights (three and 10 EO units) were thus obtained. Then, radical copolymerization of the above vinyl ethers with CTFE led to alternating poly(CTFE‐alt‐VE) copolymers that bore oligo(OE) side chains in satisfactory yields (65%). These original poly(CTFE‐g‐oligoEO) graft copolymers were characterized by 1H, 19F, and 13C NMR spectroscopy. Their molecular weights reached 19,000 g mol?1, and their thermal properties were investigated while their glass transition temperatures ranged between ?42 and ?36 °C. Their thermogravimetric analyses under air showed decomposition temperatures of 270 °C with 10% weight loss (Td,10%). These novel copolymers are of potential interest as polymer electrolytes in lithium ion batteries, showing room temperature conductivities ranging from 4.49 × 10?7 to 1.45 × 10?6 S cm?1 for unplasticized material. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A new hyperbranched poly (amine‐ester)‐poly (lactide‐co‐glycolide) copolymer (HPAE‐co‐PLGA) was synthesized by ring‐opening polymerization of D , L ‐lactide (DLLA) glycolid and branched poly (amine‐ester) (HPAE‐OHs) with Sn(Oct)2 as catalyst. The chemical structures of copolymers were determined by FT‐IR, 1H‐NMR(13C NMR), TGA and their molecular weights were determined by gel permeation chromatography (GPC). Paclitaxel‐loaded copolymer nanoparticles were prepared by the nanoprecipitation method. Their physicochemical characteristics, e.g. morphology and nanoparticles size distribution were then evaluated by means of fluorescence spectroscopy, environmental scanning electron microscopy (ESEM), and dynamic light scattering (DLS). Paclitaxel‐loaded nanoparticles assumed a spherical shape and have unimodal size distribution. It was found that the chemical composition of the nanoparticles was a key factor in controlling nanoparticles size, drug‐loading content, and drug release behavior. As the molar ratio of DL ‐lactide/glycolide to HPAE increased, the nanoparticles size and drug‐loading content increased, and the drug release rate decreased. The antitumor activity of the paclitaxel‐loaded HPAE‐co‐PLGA nanoparticles against human liver cancer H7402 cells was evaluated by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) method. The paclitaxel‐loaded HPAE‐co‐PLGA nanoparticles showed comparable anticancer efficacy with the free drug. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
pH and temperature‐sensitive biodegradable poly(β‐aminoester)‐graft‐poly(ε‐caprolactone)‐block‐methoxy poly(ethylene glycol) (PBAE‐g‐PCL‐b‐mPEG) amphiphilic graft copolymers with different molecular weights were synthesized. The structure of these copolymers was adjusted by varying the feed ratios of ε‐caprolactone to methoxy poly(ethylene glycol)s (mPEG), amine and diacrylate monomer amounts and the molecular weight of mPEG. Aqueous solutions of these copolymers formed micelles at lower concentrations; however, the concentrated solutions showed a reversible sol–gel transition property depending on both pH and temperature changes under representative physiological conditions (pH 7.4, 37°C). The effects of the molecular weight of pH‐sensitive poly(β‐aminoester) block and mPEG group, the hydrophobic to hydrophilic block ratio (PCL/mPEG) and the concentration of the copolymer on the sol–gel transition were investigated. Proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography measurements were used to characterize the structure of the synthesized copolymers. The self‐assemble behavior and critical micelle concentration of the amphiphilic copolymers were estimated in phosphate buffer solution using fluorescence spectroscopy. The gelling behavior was measured by using tube inversion method. At pH 7.4, all copolymer solutions prepared 20 wt% concentration indicated sol–gel transition with increasing temperature. In vitro degradation experiments displayed that the synthesized graft copolymers mostly degraded hydrolytically within 20 days under physiological conditions. In order to investigate the potential application of synthesized hydrogels in drug delivery, Methylene Blue was used and approximately 70% of the loaded amount was released in 120 hr. The findings indicate that obtained graft copolymers can be used as injectable biodegradable carriers for pharmaceutical drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A series of crosslinked siloxane/poly(ethylene glycol) (Si–PEG) copolymers were synthesized from the reactive methoxy‐functional silicone resin (Si resin) and PEGs with different molecular weights via two kinds of crosslinking reactions during an in situ curing stage. One of the crosslinking reactions is the self‐condensation between two methoxy groups in the Si resin, and another one is an alkoxy‐exchange reaction between the methoxy group in the Si resin and the OH group in PEG. The synthesized crosslinked copolymers were characterized by Fourier transform infrared spectroscopy, DSC, and 13C NMR. The crosslinked copolymers were stable in a moisture‐free environment, but the Si? O? C linkages were hydrolyzed in humid conditions. The gel‐like solid polymer electrolytes (SPEs) were prepared by impregnating these crosslinked Si–PEG copolymers in a propylene carbonate (LiClO4/PC) solution. The highest conductivity reached 2.4 × 10?4 S cm?1 at 25 °C and increased to 8.7 × 10?4 S cm?1 at 85 °C. The conductivities of these gel‐type SPEs were affected by the content of LiClO4/PC, the molecular weights of PEGs, and the weight fraction of the Si resin. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2051–2059, 2004  相似文献   

16.
Water‐soluble poly(ethylene glycol) derivatives with multiple “clickable” mercapto groups or double bonds were facilely synthesized in a large scale by direct polycondensation of oligo(ethylene glycol) diol with mercaptosuccinic acid or maleic acid catalyzed by scandium trifluoromethanesulfonate under mild conditions. Injectable hydrogels containing doxorubicin hydrochloride (DOX · HCl) could be rapidly formed using these poly(ethylene glycol) derivatives as precursors via in situ thiol‐ene “click” reaction under physiological conditions without light, initiator, or metal catalyst. DOX · HCl could be sustained released from the hydrogels as a result of the hindrance of the three dimensional hydrogel network on the drug molecules, which makes this kind of DOX‐loaded hydrogels a promising candidate for localized tumor chemotherapy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A series of copolylactones was synthesized by ring‐opening copolymerization of glycolide, L ‐lactide and ?‐caprolactone, using stannous octoate as catalyst. The in vitro degradation behaviors of them were studied and data demonstrated different degradation rates which mainly depended on the compositions. Investigation of the 5‐fluorouracil (5‐Fu) release from these copolylactones revealed that the composition, degradation rate and the morphology of the polymeric matrix played an important role on the drug release kinetics. A sustained 5‐Fu release without initial time lag was obtained from random poly(lactide‐co‐glycolide‐co‐caprolactone) (r‐PGLC) drug carrier, and it differed from the cases of polylactide (PLA) or random poly(lactide‐co‐glycolide) (PLGA), which usually showed an initial time lag or biphasic drug release behavior. It was due to the low glass transition temperature (T g) of the r‐PGLC and the drug would diffuse faster in rubbery state under the experimental temperature. Furthermore, a significant change in the drug release behavior of r‐PGLC was observed when the temperatures were changed around the T g of the drug carrier, which implied that the drug release behavior could be regulated by adjusting the morphology of the drug carrier. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Star oligo/poly(2,2‐dimethyltrimethylene carbonate)s containing cholic acid moieties were synthesized through the ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) initiated by cholic acid with hydroxyl groups. Through the control of the feed ratio of the initiator cholic acid to the monomer DTC, a series of star oligomers/polymers with different molecular weights were obtained. The star oligomers/polymers were characterized with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, combined size exclusion chromatography/multi‐angle laser light scattering analysis, wide‐angle X‐ray scattering, polarizing light microscopy, and differential scanning calorimetry. Compared with linear poly(2,2‐dimethyltrimethylene carbonate), these star oligo/poly(2,2‐dimethyltrimethylene carbonate)s had much faster hydrolytic degradation rates. With one of the star oligomers/polymers, a microsphere drug‐delivery system of a submicrometer size was fabricated with a very convenient ultrasonic dispersion method that did not involve toxic organic solvents. The in vitro drug release was studied. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6688‐6696, 2006  相似文献   

19.
Thermoresponsive and pH‐responsive graft copolymers, poly(L ‐glutamate)‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) and poly(L ‐glutamic acid‐co‐(L ‐glutamate‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate))), were synthesized by ring‐opening polymerization (ROP) of N‐carboxyanhydride (NCA) monomers and subsequent atom transfer radical polymerization of 2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate. The thermoresponsiveness of graft copolymers could be tuned by the molecular weight of oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) (OMEO3MA), composition of poly(L ‐glutamic acid) (PLGA) backbone and pH of the aqueous solution. The α‐helical contents of graft copolymers could be influenced by OMEO3MA length and pH of the aqueous solution. In addition, the graft copolymers exhibited tunable self‐assembly behavior. The hydrodynamic radius (Rh) and critical micellization concentration values of micelles were relevant to the length of OMEO3MA and the composition of biodegradable PLGA backbone. The Rh could also be adjusted by the temperature and pH values. Lastly, in vitro methyl thiazolyl tetrazolium (MTT) assay revealed that the graft copolymers were biocompatible to HeLa cells. Therefore, with good biocompatibility, well‐defined secondary structure, and mono‐, dual‐responsiveness, these graft copolymers are promising stimuli‐responsive materials for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The synthesis of original fluorinated (co)telomers containing vinylidene fluoride (VDF) or VDF and hexafluoropropene (HFP) was achieved by radical telomerizations and (co)telomerizations of VDF (or VDF and HFP) in the presence of 1, 6‐diiodoperfluorohexane via a semisuspension process. tert‐Butyl peroxypivalate (TBPPi) was used as an efficient thermal initiator. The numbers of VDF and VDF/HFP base units in the (co)telomers were determined by 19F and 1H NMR spectroscopy. They ranged from 10 to 190 VDF base units. Fluorinated telomers of various molecular weights (1200–12,600 g/mol) were obtained by the alteration of the initial [1,6‐diiodoperfluorohexane]0/[fluoroalkenes]0 and [TBPPi]0/[fluoroalkenes]0 molar ratios. The thermal properties of these fluorinated (co)telomers, such as the glass‐transition temperature and melting temperature, were examined. As expected, these telomers exhibited good thermal stability. They were stable at least up to 350 °C. The compounds containing more than 30 VDF units were crystalline, whereas all those containing VDF‐co‐HFP were amorphous with elastomeric properties, whatever the number was of the fluorinated base units. The structures of I–(VDF)n–RF–(VDF)m–I and I–(HFP)x(VDF)n–RF–(VDF)m(HFP)y–I (co)telomers were obtained, and the defects of the VDF chain and the ? CH2CF2I and ? CF2CH2I functionalities were studied successfully (where RF = C6F12). The functionality in the iodine atoms was modified: the higher the VDF content in the telomers, the lower the normal end functionality (? CH2CF2I) and the higher the reversed extremity (? CF2CH2I). In addition, the percentage of defects increased when the number of VDF units increased. The molecular weights and molecular weight distributions of different telomers and cotelomers were also studied. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1470–1485, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号