首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Donor–acceptor (D–A) conjugated polymers bearing non‐covalent configurationally locked backbones have a high potential to be good photovoltaic materials. Since 1,4‐dithienyl‐2,5‐dialkoxybenzene ( TBT ) is a typical moiety possessing intramolecular S…O interactions and thus a restricted planar configuration, it was used in this work as an electron‐donating unit to combine with the following electron‐accepting units: 3‐fluorothieno[3,4‐b]thiophene ( TFT ), thieno‐[3,4‐c]pyrrole‐4,6‐dione ( TPD ), and diketopyrrolopyrrole ( DPP ) for the construction of such D–A conjugated polymers. Therefore, the so‐designed three polymers, PTBTTFT , PTBTTPD , and PTBTDPP , were synthesized and investigated on their basic optoelectronic properties in detail. Moreover, using [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as acceptor material, polymer solar cells (PSCs) were fabricated for studying photovoltaic performances of these polymers. It was found that the optimized PTBTTPD cell gave the best performance with a power conversion efficiency (PCE) of 4.49%, while that of PTBTTFT displayed the poorest one (PCE = 1.96%). The good photovoltaic behaviors of PTBTTPD come from its lowest‐lying energy level of the highest occupied molecular orbital (HOMO) among the three polymers, and good hole mobility and favorable morphology for its PC71BM‐blended film. Although PTBTDPP displayed the widest absorption spectrum, the largest hole mobility, and regular chain packing structure when blended with PC71BM, its unmatched HOMO energy level and disfavored blend film morphology finally limited its solar cell performance to a moderate level (PCE: 3.91%). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 689–698  相似文献   

2.
Polymers consisting of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]thiophene units (PTB‐based polymers), either fully or partially containing 4‐fluorophenyl pendants, are synthesized as electron donor materials for inverted‐type polymer solar cells (PSCs). The influence of the 4‐fluorophenyl pendant content on the thermal and optical properties, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the hole mobilities, and photovoltaic performances are investigated. As the 4‐fluorophenyl pendant content increased, the HOMO and LUMO of the polymers were deepened proportionally and the open‐circuit voltages of the PSCs improved. Incorporation of 4‐fluorophenyl pendants into the polymers also affected the crystallinity, orientation, and compatibility with [6,6]‐phenyl‐C61‐butyric acid methyl ester in the active layers, leading to nonlinearities in the short‐circuit current densities, and fill factors. The incorporation of an appropriate number of 4‐fluorophenyl pendants enhanced the power conversion efficiencies of the PSC devices from 2.25 to 3.96% for identical device configurations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1586–1593  相似文献   

3.
Six alternating conjugated copolymers ( PL1 – PL6 ) of benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thiophene, containing electron‐withdrawing oxadiazole (OXD), ester, or alkyl as side chains, were synthesized by Stille coupling reaction. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. The introduction of conjugated electron‐withdrawing OXD or formate ester side chain benefits to decrease the bandgaps of the polymers and improve the photovoltaic performance due to the low steric hindrance of BDT. Bulk heterojunction polymer solar cells (PSCs) were fabricated based on the blend of the as‐synthesized polymers and the fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) in a 1:2 weight ratio. The maximum power conversion efficiency of 2.06% was obtained for PL5 ‐based PSC under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1‐b:3,4‐b′]dithiophene (NDT) derivatives blended with phenyl‐C71‐butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene‐chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar‐cell performances and their degree of crystallization was assessed. The grazing‐incidence angle X‐ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the JV characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT‐based polymers for use in bulk heterojunction solar cells.  相似文献   

5.
A novel class of thieno[3,2‐b]thiophene (TT) and isoindigo based copolymers were synthesized and evaluated as electron donor and hole transport materials in bulk‐heterojunction polymer solar cells (BHJ PSCs). These π‐conjugated donor‐acceptor polymers were derived from fused TT and isoindigo structures bridged by thiophene units. The band‐gaps and the highest occupied molecular orbital (HOMO) levels of the polymers were tuned using different conjugating lengths of thiophene units on the main chains, providing band‐gaps from 1.55 to 1.91 eV and HOMO levels from ?5.34 to ?5.71 eV, respectively. The corresponding lowest unoccupied molecular orbital (LUMO) levels were appropriately adjusted with the isoindigo units. Conventional BHJ PSCs (ITO/PEDOT:PSS/active layer/interlayer/Al) with an active layer composed of the polymer and PC71BM were fabricated for evaluation. Power conversion efficiency from a low of 1.25% to a high of 4.69% were achieved with the best performing device provided by the D?π?A polymer with a relatively board absorption spectrum, high absorption coefficient, and more uniform blend morphology. These results demonstrate the potential of this class of thieno[3,2‐b]thiophene‐isoindigo‐based polymers as efficient electron donor and hole transport polymers for BHJ PSCs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
We successfully synthesized new D‐A copolymers that employ 1,10‐bithienopyrrolodione (biTPD), thiophene, and selenophene‐based donor monomeric units. Two polymers, PBTPDEBT and PBTPDEBS , exhibited high degrees of crystallinity and unique polymer chain arrangements on the substrate, which is attributed to their enhanced coplanarity and intermolecular interactions between the polymer chains. Among the thin‐film transistor devices made of PBTPDEBT and PBTPDEBS , the annealed PBTPDEBS device displayed relatively high hole mobility, which was twice that of the PBTPDEBT ‐based device. In addition, an organic photovoltaic device based on a PBTPDEBS :PC71BM blend displayed the maximum power conversion efficiency of 3.85%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1228–1235  相似文献   

7.
A strategy of the fine‐tuning of the degree of intrachain charge transfer and aromaticity of polymer backbone was adopted to design and synthesize new polymers applicable in photovoltaics. Three conjugated polymers P1 , P2 , and P3 were synthesized by alternating the electron‐donating dithieno[3,2‐b:2′3′‐d]pyrrole (D) and three different electron‐accepting (A) segments ( P1 : N‐(2‐ethylhexyl)phthalimide; P2 : 1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole; and P3 : thiophene‐3‐hexyl formate) in the polymer main chain. Among the three polymers, P2 possessed the broadest absorption band ranging from 300 to 760 nm, the lowest bandgap (1.63 eV), and enough low HOMO energy level (?5.27 eV) because of the strong intrachain charge transfer from D to A units and the appropriate extent of quinoid state in the main chain of P2 , which was convinced by the theoretical simulation of molecular geometry and front orbits. Photovoltaic study of solar cells based on the blends of P1 – P3 and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) demonstrated that P2 :PCBM exhibited the best performance: a power conversion efficiency of 1.22% with a high open‐circuit voltage (VOC) of 0.70 V and a large short‐circuit current (ISC) of 5.02 mA/cm2 were achieved. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
To explore the aptitude of 1,2,4‐oxadiazole‐based electron‐acceptor unit in polymer solar cell applications, we prepared four new polymers (P1–P4) containing 1,2,4‐oxadiazole moiety in their main chain and applied them to solar cell applications. Thermal, optical, and electrochemical properties of the polymers were studied using thermogravimetric, absorption, and cyclic voltammetry analysis, respectively. All four polymers showed high thermal stability (5% degradation temperature over 335 °C), and the optical band gaps were calculated to be 2.20, 1.72, 1.37, and 1.74 eV, respectively, from the onset wavelength of the film‐state absorption band. The energy levels of the polymers were found to be suitable for bulk heterojunction (BHJ) solar cell applications. The BHJ solar cells were prepared by using the synthesized polymers as a donor and PC71BM as an electron acceptor with the configuration of ITO/PEDOT:PSS/polymer:PC71BM (1:3 wt %)/LiF/Al. One of the polymers was found to show the maximum power conversion efficiency of 1.33% with a Jsc of 4.95 mA/cm2, a Voc of 0.68 V, and a FF of 40%, measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
Pentacyclic diindeno[1,2‐b:2′,1′‐d]thiophene ( DIDT ) unit is a rigid and coplanar conjugated molecule. To the best of our knowledge, this attractive molecule has never been incorporated into a polymer and thus its application in polymer solar cells has never been explored. For the first time, we report the detailed synthesis of the tetra‐alkylated DIDT molecule leading to its dibromo‐ and diboronic ester derivatives, which are the key monomers for preparation of DIDT ‐based polymers. Two donor–acceptor alternating polymers, poly(diindenothiophene‐alt‐benzothiadiazole) PDIDTBT and poly(diindenothiophene‐alt‐dithienylbenzothiadiazole) PDIDTDTBT , were synthesized by using Suzuki polymerization. Copolymer PTDIDTTBT was also prepared by using Stille polymerization. Although PTDIDTTBT is prepared through a manner of random polymerization, we found that the different reactivities of the dibromo‐monomers lead to the resulting polymer having a block copolymer arrangement. With the higher structural regularity, PTDIDTTBT , symbolized as (thiophene‐alt‐ DIDT )0.5block‐(thiophene‐alt‐BT)0.5, shows the higher degree of crystallization, stronger π–π stacking, and broader absorption spectrum in the solid state, as compared to its alternating PDIDTDTBT analogue. Bulk heterojunction photovoltaic cells based on ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al configuration were fabricated and characterized. PDIDTDTBT /PC71BM and PTDIDTTBT /PC71BM systems exhibited promising power‐conversion efficiencies (PCEs) of 1.65 % and 2.00 %, respectively. Owing to the complementary absorption spectra, as well as the compatible structures of PDIDTDTBT and PTDIDTTBT , the PCE of the device based on the ternary blend PDIDTDTBT / PTDIDTTBT /PC71BM was further improved to 2.40 %.  相似文献   

10.
Low‐band gap selenophene‐based polymers were synthesized. Their optoelectronic and photovoltaic properties and space‐charge limited currents were compared with those of the related thiophene‐based polymers. The band gaps of the Se‐based derivatives were approximately 0.05–0.12 eV lower than those of their thiophene counterparts. Organic photovoltaic (OPV) devices based on the blends of these polymers and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C71 (PC71BM) were fabricated, and the maximum power conversion efficiency of the OPV device based on PSPSBT and PC71BM was 3.1%—with a short‐circuit current density (Jsc) of 9.3 mA cm?2, an open‐circuit voltage (Voc) of 0.79 V, and a fill factor of 0.42—under AM 1.5 G illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4550–4557  相似文献   

11.
Two new side‐chain donor–acceptor (D‐A)‐based triphenylamine‐alt‐benzo[1,2‐b:4,5‐b′]dithiophene (TPA‐alt‐BDT) copolymers ( P1 and P2 ) with pendant benzothiadiazole (BT)/diketopyrrolopyrrole (DPP) in TPA unit were synthesized by Stille coupling polymerization. Their thermal, photophysical, electrochemical, blend film morphology and photovoltaic properties were investigated. Efficient bulk heterojunction polymer solar cells (PSCs) were obtained by solution process using both copolymers as donor materials and PC71BM as acceptor. The maximum power conversion efficiency (PCE) of 3.17% with a highest open‐circuit voltage (Voc) of 0.86V was observed in the P1 ‐based PSCs, while the maximum short‐circuit current (Jsc) of 10.77 mA cm?2 was exhibited in the P2 ‐based PSCs under the illumination of AM 1.5, 100 mW cm?2. The alternating binary donor units and pending acceptor groups played a significant role in tuning photovoltaic properties for this class of the side‐chain D–A‐based copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4103–4110  相似文献   

12.
Porphyrin, despite chosen by Nature as light harvesting units, hasn't revealed its full potentials as a structural unit in porphyrin‐incorporated polymers (PPors). A novel PPor was synthesized to investigate the origins of the low performances of PPor‐based polymer solar cells (PSCs). The polymer features broad absorption in the blue‐light region, because the diindenothieno[2,3‐b]thiophene (DITT) unit extended the conjugation in the polymer backbone. PPor‐DITT/PC71BM based PSCs have a high Voc (0.79 V). Their low Jsc and fill factor (FF) were attributed to the un‐optimized morphology, as indicated by the photoluminescence quenching and atomic force microscopy (AFM) experiments. Using PPor‐DITT as a blue‐light harvesting dopant in an amorphous host leverage the strong 400–550 nm absorption of PPor‐DITT and circumvent the difficulties in reaching optimized morphology in the PPor/PCBM thin films. An addition of 2 wt % of PPor‐DITT in ternary‐blend PSCs resulted in a 10 % increase of external quantum efficiency (EQE) in the blue‐light region. However, in a crystalline host, the dopant decreased the crystallinity of the host and led to large drops in FF and power conversion efficiencies (PCEs). The study provides an alternative route and expands the application of PPors in PSCs as a blue‐light harvester in ternary‐blend PSCs using amorphous polymers as host. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field‐effect transistors and polymer solar cells. By changing the donor component of the conjugated polymer backbone from bithiophene to terthiophene, the density of thiophene in the backbone is increased, manifesting as a decrease in both ionization potential and in electron affinity. Therefore, the charge transport in field‐effect transistors switches from ambipolar to predominantly hole transport behavior. PAIIDTT exhibits hole mobility up to 0.40 cm2/Vs and electron mobility of 0.02 cm2/Vs, whereas PAIIDTTT exhibits hole mobility of 0.62 cm2/Vs. Polymer solar cells were fabricated based on these two polymers as donors with PC61BM and PC71BM as acceptor where PAIIDTT shows a modest efficiency of 2.57% with a very low energy loss of 0.55 eV, while PAIIDTTT shows a higher efficiency of 6.16% with a higher energy loss of 0.74 eV. Our results suggest that azaisoindgo is a useful building block for the development of efficient polymer solar cells with further improvement possibility by tuning the alternative units on the polymer backbone. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2691–2699  相似文献   

14.
New donor–acceptor (D‐A) polymers, poly(4,5‐bis(2‐octyldodecyloxy)naphto[2,1‐b:3,4‐b']dithiophenebenzo[c][1,2,5]thiadiazole) (PNDT‐B) and poly(4,5‐bis(2‐octyldodecyloxy)naphto [2,1‐b:3,4‐b′]dithiophene‐4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole) (PNDT‐TBT), with the extended π‐electron delocalization of naphtho[2,1‐b:3,4‐b']dithiophene, were successfully synthesized by Suzuki and Stille coupling reactions. The structure and physical properties of polymers were characterized by DFT calculation, UV–vis absorption, cyclovoltammetry, TGA and DSC analyses. X‐ray diffraction studies indicated a relatively highly ordered intermolecular structure in PNDT‐TBT after annealing. This high degree of molecular order resulted from the crystallinity and increasing planarity, provided by the thiophene linker groups and the interdigitation of the long alkoxy side chains. The new D‐A polymer, PNDT‐TBT, exhibited a p‐type carrier mobility of 0.028 cm2/Vs and an on/off ratio of 5.9 × 103. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 525–531  相似文献   

15.
A set of three donor‐acceptor conjugated (D‐A) copolymers were designed and synthesized via Stille cross‐coupling reactions with the aim of modulating the optical and electronic properties of a newly emerged naphtho[1,2‐b:5,6‐b′]dithiophene donor unit for polymer solar cell (PSCs) applications. The PTNDTT‐BT , PTNDTT‐BTz , and PTNDTT‐DPP polymers incorporated naphtho[1,2‐b:5,6‐b′]dithiophene ( NDT ) as the donor and 2,2′‐bithiazole ( BTz ), benzo[1,2,5]thiadiazole ( BT ), and pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione ( DPP ), as the acceptor units. A number of experimental techniques such as differential scanning calorimetry, thermogravimetry, UV–vis absorption spectroscopy, cyclic voltammetry, X‐ray diffraction, and atomic force microscopy were used to determine the thermal, optical, electrochemical, and morphological properties of the copolymers. By introducing acceptors of varying electron withdrawing strengths, the optical band gaps of these copolymers were effectively tuned between 1.58 and 1.9 eV and their HOMO and LUMO energy levels were varied between ?5.14 to ?5.26 eV and ?3.13 to ?3.5 eV, respectively. The spin‐coated polymer thin film exhibited p‐channel field‐effect transistor properties with hole mobilities of 2.73 × 10?3 to 7.9 × 10?5 cm2 V?1 s?1. Initial bulk‐heterojunction PSCs fabricated using the copolymers as electron donor materials and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as the acceptor resulted in power conversion efficiencies in the range of 0.67–1.67%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2948–2958  相似文献   

16.
We have synthesized six p‐type copolymers, CPDT ‐ co ‐ TPADCN , CPDT ‐ co ‐ TPADTA , CPDT ‐ co ‐ TPATCN , CPDT ‐ co ‐ DFADCN , CPDT ‐ co ‐ DFADTA , and CPDT ‐ co ‐ DFATCN , consisting of a cyclopenta[2,1‐b:3,4‐b′]dithiophene (CPDT) unit and an organic dye in an alternating arrangement. Triphenylamine (TPA) or difluorenylphenyl amine (DFA) units serve as the electron donors, whereas dicyanovinyl (DCN), 1,3‐diethyl‐2‐thiobarbituric acid, or tricyanovinyl (TCN) units act as the electron acceptors in the dyes. The target polymers were prepared via Stille coupling, followed by postfunctionalization to introduce the electron acceptors to the side chains. Because of the strongest withdrawing ability of TCN acceptor to induce efficient intramolecular charge transfer, CPDT ‐ co ‐ TPATCN and CPDT ‐ co ‐ DFATCN exhibit the broader absorption spectra covering from 400 to 900 nm and the narrower optical band gaps of 1.34 eV. However, the CPDT ‐ co ‐ TPATCN :PC71BM and CPDT ‐ co ‐ DFATCN :PC71BM based solar cells showed the power conversion efficiencies (PCEs) of 0.22 and 0.31%, respectively, due to the inefficient exciton dissociation. The DFA‐based polymers possess deeper‐lying HOMO energy levels than the TPA‐based polymer analogues, leading to the higher Voc values and better efficiencies. The device based on CPDT ‐ co ‐ DFADTA :PC71BM blend achieved the best PCE of 1.38% with a Voc of 0.7 V, a Jsc of 4.57 mA/cm2, and a fill factor of 0.43. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
2,7‐dibromo‐N‐hexylcarbazole is successfully synthesized in three steps with an overall 37% yield. Novel 2,7‐carbazole‐based sterically hindered conjugated polymers are further synthesized. In the backbone structure of polymer P1 , alkylated bithiophene moiety is β‐substituted with dodecyl chains on both thiophene rings, adopting the tail‐to‐tail configuration. While for polymers P2 and P3 , partially planarized thieno[3,2‐b]thiophene moiety ( P2 ) and β‐pentyl substituted thieno[3,2‐b]thiophene ( P3 ) are incorporated. All polymers demonstrate efficient blue‐to‐green light emission, good thermal stability (Td ≥ 379 °C), and high glass transition temperatures (Tg = 118 °C). The optical and electronic properties of the resulted polymers are tuned by the incorporated alkyl chains. For instance, the incorporation of β‐pentyl group in thieno[3,2‐b]thiophene moiety endows P3 with blue‐shifted photophysical spectra, reduced fluorescence quantum yield and larger band gap in comparison with P2 . The steric effect of incorporated alkyl chains is further illustrated by geometry optimization of three model oligomers (analogues to the repetition units of P1–P3 ) using density functional theory. Sterically hindered polymers P1 and P2 exhibit high charge transport ability and moderate electroluminescent properties in primarily tested single‐layer light‐emitting diodes (configuration: ITO/PEDOT:PSS/Polymer/Ca/Ag). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7725–7738, 2008  相似文献   

18.
Three classes of quinoxaline (Qx)‐based donor–acceptor (D–A)‐type copolymers, poly[thiophene‐2,5‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diyl] P(T‐Qx), poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diy} P(BDT‐Qx), and poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5′,8′‐di‐2‐thienyl‐2,3‐bis(4‐octyloxyl)phenyl)‐quinoxaline‐5,5‐diyl} P(BDT‐DTQx), were synthesized via a Stille coupling reaction. The Qx unit was functionalized at the 2‐ and 3‐positions with 4‐(octyloxy)phenyl to provide good solubility and to reduce the steric hindrance. The absorption spectra of the Qx‐containing copolymers could be tuned by incorporating three different electron‐donating moieties. Among these, P(T‐Qx) acted as an electron donor and yielded a high‐performance solar cell by assuming a rigid planar structure, confirmed by differential scanning calorimetry, UV–vis spectrophotometer, and density functional theory study. In contrast, the P(BDT‐Qx)‐based solar cell displayed a lower power conversion efficiency (PCE) with a large torsional angle (34.7°) between the BDT and Qx units. The BDT unit in the P(BDT‐DTQx) backbone acted as a linker and interfered with the formation of charge complexes or quinoidal electronic conformations in a polymer chain. The PCEs of the polymer solar cells based on these copolymers, in combination with [6,6]‐phenyl C70 butyric acid methyl ester (PC71BM), were 3.3% [P(T‐Qx)], 1.9% [P(BDT‐Qx)], and 2.3% [P(BDT‐DTQx)], respectively, under AM 1.5G illumination (100 mW cm?2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Two semicrystalline low band gap polymers based on highly electron‐deficient 2,1,3‐benzothiadiazole‐5,6‐dicarboxylicimide (BTI) were synthesized by considering the chain planarity via intrachain noncovalent coulombic interactions. The thiophene‐BTI and thienothiophene‐BTI based PPDTBTI and PPDTTBTI have a low band gap (~1.5 eV) via strong intramolecular charge transfer interaction, showing a broad light absorption covering 300~850 nm. Semicrystalline film morphology was observed for both polymers in the grazing incidence wide angle X‐ray scattering measurements. Interestingly, PPDTBTI showed a pronounced edge on packing structure but PPDTTBTI showed predominantly a face on orientation in both pristine and blend films. Different packing patterns influenced significantly the charge carrier transport, recombination and resulting photovoltaic characteristics. The best power conversion efficiency was measured to be 5.47% for PPDTBTI and 6.78% for PPDTTBTI, by blending with the fullerene derivative, PC71BM. Compared to the PPDTBTI blend, PPDTTBTI: PC71BM suffered from the lower open‐circuit voltage but showed the substantially higher hole mobility and short‐circuit current density with smaller charge recombination, showing very good agreements with molecular structures and morphological characteristics. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3826–3834  相似文献   

20.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号