首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用密度泛函理论方法B3P86/6-31++G(d, p),对对苯二甲酸乙二醇酯一聚体降解反应机理进行了理论研究.设计了对苯二甲酸乙二醇酯一聚体纯热解、水解和醇解、水或醇作为催化剂降解过程的各种可能反应路径,对参与反应的各种中间体、过渡态及产物进行了几何结构优化和频率计算以获得热力学与动力学参数值.计算结果表明:当水或甲醇作为对苯二甲酸乙二醇酯热降解过程中的催化剂时,利用水或甲醇O-H中H提供到对苯二甲酸乙二醇酯一聚体主链酯键中O原子上形成对苯二甲酸,而乙烷基脱掉的H原子与水中羟基(-OH)或醇中甲氧基(-OCH3)结合形成新的水或者甲醇,从而降低对苯二甲酸乙二醇酯热解过程中的反应能垒(251.4 kJ/mol→181.1 kJ/mol(甲醇)和187.5 kJ/mol(水));当水或甲醇作为对苯二甲酸乙二醇酯热降解过程中的反应物参与反应时,利用水或甲醇O-H中H提供到对苯二甲酸乙二醇酯一聚体主链乙烷基旁O原子上形成乙二醇,而水中羟基(-OH)或醇中甲氧基(-OCH3)结合对苯二甲酸乙二醇酯一聚体主链羰基中C原子上形成对苯二甲酸或对苯二甲酸单...  相似文献   

3.
The linear and nonlinear optical properties of 4 kinds of experimental synthesized azobenzene‐based chromophores were investigated by different density functional theories (DFTs) upon the electronic structures. The structure‐property relationship was studied on each single molecule either in the gas phase or in diethylether and tetrahydrofuran (THF) solutions. The substituent effect on optical properties was revealed by checking the positions of substituent groups, and the influence of dynamic perturbation to the optical nonlinearity was investigated by simulating the experimental excitation. The results revealed that the substituent in the meta‐position of the azobenzene group affects the optical properties more significantly than that in the ortho‐position, which is in agreement with the experimental finding. The modulation of molecular hyperpolarizability of bridge‐substituted azobenzene derived by dynamic perturbation is not recommended because of the reduced dynamic hyperpolarizability relative to the static one. The different functions of the DFT method hardly affect the calculated results, while solvent effects of diethylether and THF solutions are significant on the optical properties, especially for optical nonlinearity. The information derived from the single chromophore may be helpful in the design and preparation of high‐performance nonlinear optical materials in further.  相似文献   

4.
In this work, a set of derivatives of 2‐(5‐amino‐3‐nitro‐1,2,4‐triazolyl)‐3,5‐dinitropyridine (PRAN) with different energetic substituents (?N3, –NO2, –NH2, –NF2) have been studied at the Becke, three‐parameter, Lee–Yang–Parr/aug‐cc‐pvdz, Becke, three‐parameter, Lee–Yang–Parr/6‐31G(d), Becke, three‐parameter, Perdew 86/6‐31G(d), and Becke three‐parameter, Perdew–Wang 91/6‐31G(d,p) levels of density functional theory. The gas‐phase heats of formation were predicted with isodesmic reactions and the condensed‐phase HOFs were estimated with the Politzer approach. The effects of different functionals and basis sets were analyzed. –N3 and –NO2 greatly increase while –NH2 and –NF2 slightly decrease heats of formation. An analysis of the bond dissociation energies and impact sensitivity shows that all compounds have good stability. The crystal densities (1.82–2.00 g/cm3) computed from molecular packing calculations are big for all compounds and that of the –NF2 derivative is the largest. All derivatives have higher detonation velocity and detonation pressure than PRAN. Compounds 3 and 4 (R = NO2 and NF2) have better performance than hexahydro‐1,3,5‐trinitro‐1,3,5‐trizine and the performance of 4 is quite close to that of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane, they are promising candidates of high energy compounds and worth further investigations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The present paper reports a study on the energetics of protonation of a hydrogenase biomimetic complex, [Fe2(μ‐adt)(CO)4(PMe3)2] (adt = N‐benzylazadithiolate), and of its homologue featuring triphenylphosphine ligands in place of trimethylphosphines. Formation of a terminal hydride on one of the Fe centres was considered first, given the key relevance of terminal hydride species in the enzymatic mechanism. Theoretical calculations highlight that, in a vacuum, terminal protonation of the selected Fe ion in the PPh3‐bearing organometallic complex is highly favoured when compared to the analogous reaction involving the PMe3‐containing species, but the trend is inverted in the case of models optimized in a continuum polarizable. An unexpected parallel is thus established between relative basicities of PPh3 and PMe3 in vacuum or in solution phase [C. A. Tolman, J. Am. Chem. Soc. 1970 , 92, 2953; G. M. Bancroft, Inorg. Chem. 1986 , 25, 3675], and the energetics of terminal hydride formation upon protonation of [FeFe]‐hydrogenase biomimetic complexes bearing such organophosphorous ligands. Bridging hydride formation was also considered in the present study: calculations showed that protonation of the PMe3‐bearing organometallic complex is again strongly favoured in vacuo, as compared to the case of the PPh3‐containing model. However, protonation energies become significantly smaller when solvent effects are taken into account. Such differences between protonation reactions modelled in vacuo and in the polarizable continuum are rationalized in light of the different electrostatic properties of the diiron complexes here considered. Implications for the design and modelling of biomimetic catalysts are briefly discussed in light of recent literature.  相似文献   

6.
The density functional theory was used to investigate the interactions between 1‐ethyl‐3‐methylimidazolium chloride ([EMIM]Cl) and benzene/pyridine/pyrrole/thiophene. The complexes formed between [EMIM]Cl and benzene/pyridine/pyrrole/thiophene were optimized at the ωB97XD/6‐31++G** level, and the optimized complexes were further analyzed by natural bond orbital, atoms in molecules, and noncovalent interaction. The calculated results show that the interaction energy between ionic liquid and benzene/pyridine/pyrrole/thiophene is in the order pyrrole > pyridine > thiophene > benzene. The major interactions between ionic liquid and benzene/pyridine/pyrrole/thiophene are hydrogen bonding and π‐π interaction, accompanied by C···H, N···H, H···H, and S···H weak interactions. Both cation and anion of ionic liquid are involved in interactions with aromatic compounds.  相似文献   

7.
The density functional theory methods are used to design a series of new highly energetic tetrazolone‐based molecules by the combination of the linked tetrazolone framework and versatile substitutes. The molecular and electronic structures, physicochemical, and energetic properties were analyzed and predicted. The decomposition mechanisms were computationally simulated, and 3 potential decomposition channels were proposed. These newly designed tetrazolone‐based compounds show high densities (up to 2.08 g/cm3) and highly positive heats of formation (407.0‐1377.9 kJ/mol) due to all right content of nitrogen and oxygen. Most of them exhibit good detonation velocity (8.31‐9.62 km/s) and detonation pressure (32.40‐43.86 GPa), and some are comparative to excellent explosive CL‐20. Results show that compounds 6 , 10 , 11 , 12 , 15 , 16 , 17 , 22 , 23 , and 24 own superior detonation performance than widely used explosive HMX and may be promising candidates of green high‐performance energetic materials.  相似文献   

8.
The mechanisms of the single and double Mannich reactions between acetaldehyde and N‐Boc imines are clarified by density functional theory calculations. For single addition of Mannich reaction, the energy difference between the transition states of different configurations correspond to an enantiomeric excess value of 90.58% (without solvent) and 98.46% (in acetonitrile) in favor of the (S)‐configuration product. For bis‐addition of Mannich reaction, the calculated enantiomeric excess value is 95.02% (without solvent) and 98.57% (in acetonitrile) in favor of the (S, S)‐configuration product. These calculated results are in good agreement with the experimental results. The calculations clearly demonstrate that the hydrogen‐bonding determine the stereochemistry of the reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
1H and 13C NMR chemical shifts were measured for a set of six isomers—the cis and trans 2‐, 3‐, and 4‐methylcyclohexanols. 1H and 13C NMR chemical shifts were computed at the B3LYP, WP04, WC04, and PBE1 density functional levels for the same compounds, taking into account the Boltzmann distribution among conformational isomers (chair–chair forms and hydroxyl rotamers). The experimental versus computed chemical shift values for proton and carbon were compared and evaluated (using linear correlation (r2), total absolute error (|Δδ|T), and mean unsigned error (MUE) criteria) with respect to the relative ability of each method to distinguish between cis and trans stereoisomers for each of the three constitutional isomers. For 13C shift data, results from the B3LYP and PBE1 density functionals were not sufficiently accurate to distinguish all three pairs of stereoisomers, while results using the WC04 functional did do so. For 1H shift data, each of the WP04, B3LYP, and PBE1 methods was sufficiently accurate to make the proper stereochemical distinction for each of the three pairs. Applying a linear correction to the computed data improved both the absolute accuracy and the degree of discrimination for most of the methods. The nature of the cavity definition used for continuum solvation had little effect. Overall, use of proton chemical shift data was more discriminating than use of carbon data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A new wave packet molecular dynamics–density functional theory (WPMD‐DFT) method is proposed for atomistic simulations of non‐ideal plasma and warm dense matter. The method is based on the WPMD approach, where the electronic exchange and correlation effects are treated using an additional energy term taken from DFT. This term is calculated by integration over the mesh values of the wave packet density. The local density approximation is implemented so far. WPMD‐DFT is meant as a replacement for the anti‐symmetrized WPMD (AWPMD) method which is more time consuming and lacks electron correlation. In this paper, we compare the results obtained by WPMD‐DFT, WPMD, AWPMD, classical molecular dynamics, and path integral Monte Carlo methods for the internal energy of the hydrogen plasma in the temperature range 10–50 kK and electron number density from 1020 to 1024 cm?3. We also demonstrate the ability to handle the simultaneous dynamics of electrons and ions by calculating the electron–ion temperature relaxation. The scalability of the WPMD‐DFT method with the number of electrons is shown for implementations in central processing unit and graphical processing unit.  相似文献   

11.
Theoretical computations and experimental kinetic measurements were applied in studying the mechanistic pathways for the alkaline hydrolysis of three secondary amides: N‐methylbenzamide, N‐methylacetamide, and acetanilide. Electronic structure methods at the HF/6‐31+G(d,p) and B3LYP/6‐31+G(d,p) levels of theory are employed. The energies of the stationary points along the reaction coordinate were further refined via single point computations at the MP2/6‐31+G(d,p) and MP2/6‐311++G(2d,2p) levels of theory. The role of water in the reaction mechanisms is examined. The theoretical results show that in the cases of N‐methylbenzamide and N‐methylacetamide the process is catalyzed by an ancillary water molecule. The influence of water is further assessed by predicting its role as bulk solvent. The alkaline hydrolysis process in aqueous solution is characterized by two distinct free energy barriers: the formation of a tetrahedral adduct and its breaking to products. The results show that the rate‐determining stage of the process is associated with the second transition state. The entropy terms evaluated from theoretical computations referring to gas‐phase processes are significantly overestimated. The activation barriers for the alkaline hydrolysis of N‐methylbenzamide and acetanilide were experimentally determined. Quite satisfactory agreement between experimental values and computed activation enthalpies was obtained. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Mechanistic insights into Heck and Suzuki‐Miyaura cross coupling reactions with C59M (M = Pd/Ni) catalysts were developed. Density functional theory was used for the analysis of all the intermediates and transition states possible during C‐C cross coupling reactions over the catalysts under study. Oxidative addition, a step common to both Heck and Suzuki‐Miyaura cross coupling reactions, was observed to proceed with smaller activation barriers over C59Pd. Heck coupling of iodobenzene with styrene was observed to proceed via oxidative addition, migratory insertion, and reductive elimination steps. The free energy barriers for oxidative addition, migratory insertion, and reductive elimination steps were 14.8, 11.6, and 4.8 kcal/mol, respectively, over C59Pd, and 17.4, 79.3, and 17.4 kcal/mol, respectively, over C59Ni, indicating oxidative addition and migratory insertion to be the rate‐determining steps over C59Pd and C59Ni, respectively. Similarly for Suzuki‐Miyaura coupling reaction, activation barriers for oxidative addition, transmetalation, and reductive elimination steps were 14.8, 52.4, and 7.9 kcal/mol, respectively, over C59Pd, and 17.4, 64.7, and 60.2 kcal/mol, respectively, over C59Ni, indicating transmetalation step to be the rate‐determining step over both the heterofullerenes.  相似文献   

13.
This study reports a facial regio‐selective synthesis of 2‐alkyl‐N‐ethanoyl indoles from substituted‐N‐ethanoyl anilines employing palladium (II) chloride, which acts as a cyclization catalyst. The mechanistic trait of palladium‐based cyclization is also explored by employing density functional theory. In a two‐step mechanism, the palladium, which attaches to the ethylene carbons, promotes the proton transfer and cyclization. The gas‐phase barrier height of the first transition state is 37 kcal/mol, indicating the rate‐determining step of this reaction. Incorporating acetonitrile through the solvation model on density solvation model reduces the barrier height to 31 kcal/mol. In the presence of solvent, the electron‐releasing (–CH3) group has a greater influence on the reduction of the barrier height compared with the electron‐withdrawing group (–Cl). These results further confirm that solvent plays an important role on palladium‐catalyzed proton transfer and cyclization. For unveiling structural, spectroscopic, and photophysical properties, experimental and computational studies are also performed. Thermodynamic analysis discloses that these reactions are exothermic. The highest occupied molecular orbital?lowest unoccupied molecular orbital gap (4.9–5.0 eV) confirms that these compounds are more chemically reactive than indole. The calculated UV–Vis spectra by time‐dependent density functional theory exhibit strong peaks at 290, 246, and 232 nm, in good agreement with the experimental results. Moreover, experimental and computed 1H and 13C NMR chemical shifts of the indole derivatives are well correlated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, density functional theory (DFT) and time‐dependent DFT (TD‐DFT) theory are use to shed light on how the number of thiophene rings in π‐conjugated system influence the absorption spectra and non‐linear optical (NLO) properties of dyes. The results of theoretical computation show that the absorption spectra are gradually broadened and red‐shifted (384–542 nm) with increasing number of thiophene units. The theoretical examination on non‐linear optical properties was performed on the key parameters of polarizabilty and hyperpolarizability. A remarkable increase in non‐linear optical response was observed on insertion of thiophene rings in π‐spacer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
陈刚  ;高尚鹏 《中国物理 B》2012,(10):384-390
The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interaction between layers.The corrugated structure is found to be energetically favorable for both the pure and the S-doped graphitic C3N4.The S doptant is prone to substitute the N atom bonded with only two nearest C atoms.The band structure calculation reveals that this kind of S doping causes a favorable red shift of the light absorption threshold and can improve the electroconductibility and the photocatalytic activity of the graphitic C3N4.  相似文献   

16.
采用密度泛函理论B3LYP方法研究了NH3与MH(M=Li,Na)的放氢反应机理,在6-311G(2d,2p)基组水平上对反应物、中间体、过渡态及产物进行了全几何参数优化,频率分析和内禀反应坐标(IRC)计算证实了中间体和过渡态的正确性和相互连接关系。计算结果表明,NH3与MH(M=Li,Na)的反应均为单通道的氢取代反应,反应生成LiNH2(NaNH2)与H2。  相似文献   

17.
采用密度泛函理论B3LYP方法研究了NH3与MH(M=Li,Na)的放氢反应机理.在6-311G(2d.2p)基组水平上对反应物、中间体、过渡态及产物进行了全几何参数优化.频率分析和内禀反应坐标(IRC)计算证实了中间体和过渡态的正确性和相互连接关系.计算结果表明,NH2与MH(M=Li,Na)的反应均为单通道的氢取代反应,反应生成LiNH2(NaNH2)与H2.  相似文献   

18.
The structural dynamics of 4‐pyrimidone (4PMO) in the A‐ and B‐band absorptions was studied by using the resonance Raman spectroscopy combined with quantum chemical calculations to better understand whether the excited state intramolecular proton‐transfer (ESIPT) reaction occurs in Franck–Condon regions or not. The transition barrier for the ground state proton‐transfer tautomerization reaction between 3(H) (I) and hydroxy (II) was determined to be 165 kJ·mol−1 in vacuum on the basis of the B3LYP/6‐311++G(d,2p) level of theory calculations. Two ultraviolet absorption bands of 4PMO were, respectively, assigned as πH→π*L and πH→π*L+1 transitions. The vibrational assignments were done on the basis of the Fourier transform (FT)‐Raman and FT‐infrared (IR) measurements, the density‐functional theory computations and the normal mode analysis. The A‐ and B‐band resonance Raman spectra of 4PMO were measured in water, methanol and acetonitrile. The structural dynamics of 4PMO was obtained through the analysis of the resonance Raman intensity pattern. We discuss the similarities in the structural dynamics of 4PMO and 2‐thiopyrimidone (2TPM), and the results were used to correlate to the intramolecular hydrogen‐atom‐transfer process as observed by matrix‐isolation IR experiments for 4PMO. A variety of NH/CH bend modes + C = O stretch mode mark the hydrogen‐detachment‐attachment or ESIPT reaction initiated in Franck–Condon region for 4PMO and 2TPM. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A‐ and B‐band resonance Raman spectra were acquired for ethylene trithiocarbonate in cyclohexane solution. The results indicate that the S3 state structural dynamics is mostly along vibrational motions of the CS stretch υ11, while the S4 state one has motions mainly via the S C S symmetric stretch υ18, CS stretch υ11, and the H C H rock + S C S antisymmetric stretch υ14 reaction coordinates. The very different excited state structural dynamics were briefly discussed in terms of vibronic couplings using local symmetry point group. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
基于密度泛函理论(DFT)当中的B3LYP(杂化密度泛函)方法,于6-311G(d,p)基组水平上对NH_3与CaH_2的反应机理进行了计算分析,对反应过程中的反应物、中间体、过渡态及产物进行了全几何参数优化,得到其构型和基本参数.对得到的中间体和过渡态进行频率分析和内禀反应坐标(IRC)计算,以证实中间体和过渡态的正确性和相互连接关系.使用QCISD方法在6-311G(d,p)基组水平对各驻点的单点能进行计算,给出能量信息.计算结果表明:CaH_2与NH_3主要以摩尔比为1:2进行反应,分两步氢取代过程,生成产物Ca(NH2)2和2H2.反应所释放的H2中两个H原子分别来源于CaH_2和NH_3,反应的关键是脱氢,主要在于克服N—H键断裂所需能量.相比较而言从NH_3中脱氢比从—NH2中脱氢较易.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号