首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a detailed study of the structural, electronic, and absorption properties of crystalline 7,2′‐anhydro‐β‐d ‐arabinosylorotidine (Cyclo ara‐O) in the pressure range of 0–350 GPa is performed by density functional theory calculations. The detail analysis of the crystal with increasing pressure shows that complex transformations occur in Cyclo ara‐O under compression. In addition, the b‐direction is much stiffer than the a‐ and c‐axis at 0–330 GPa, suggesting that the Cyclo ara‐O crystal is anisotropic in the certain pressure region. In the pressure range of 110–290 GPa, repeated formations and disconnections of covalent bonds in O7–O6* and C3–C6* occur several times, resulting in a new six‐atom ring that forms at 220, 270, and 290 GPa, while a five‐atom ring and seven‐atom ring form between two adjacent molecules at 300 and 340 GPa, respectively. Then, the analysis of the band gap and DOS (PDOS) of Cyclo ara‐O indicates that its electronic character has changed at 300 GPa into an excellent insulator, but the electron transition is much easier at 350 GPa. Moreover, the relatively high optical activity with the pressure increases of Cyclo ara‐O is seen from the absorption spectra, and two obvious structural transformations are also observed at 180 and 230 GPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this present work, using density functional theory and time‐dependent density functional theory methods, we theoretically study the excited‐state hydrogen bonding dynamics and the excited state intramolecular proton transfer mechanism of a new 2‐phenanthro[9,10‐d]oxazol‐2‐yl‐phenol (2PYP) system. Via exploring the reduced density gradient versus sign(λ2(r))ρ(r), we affirm that the intramolecular hydrogen bond O1‐H2?N3 is formed in the ground state. Based on photoexcitation, comparing bond lengths, bond angles, and infrared vibrational spectra involved in hydrogen bond, we confirm that the hydrogen bond O1‐H2?N3 of 2PYP should be strengthened in the S1 state. Analyses about frontier molecular orbitals prove that charge redistribution of 2PYP facilitates excited state intramolecular proton transfer process. Via constructing potential energy curves and searching transition state structure, we clarify the excited state intramolecular proton transfer mechanism of 2PYP in detail, which may make contributions for the applications of such kinds of system in future.  相似文献   

3.
Pressure effects on the Raman spectra due to the inter‐ and intramolecular vibrations of the L ‐ascorbic acid crystal were studied. The intensity of the Raman bands due to the intermolecular vibrations varies in three different ways by application of pressure. The bands of the first group become stronger, those of the second one become weaker and the third group shows no prominent change in their intensity with increasing pressure. The bands due to the intermolecular vibrations show a blue shift, while the bands due to the intramolecular vibrations shift to the blue or red depending on the vibrational modes by application of pressure. The bands assigned to the O H stretching vibrations shift to the red, the bands assigned to the CO and CC stretching vibrations shift a little to the red and the bands assigned to the other vibrations shift to the blue under high pressure. The following conclusions were derived. (1) The hydrogen bonds forming helixes become stronger and the isolated hydrogen bond becomes weaker with increasing pressure. (2) The bands of the first group owing to the intermolecular vibrations are ascribed to the vibrations related to the helix hydrogen bonds and the second group bands to the isolated hydrogen bond. (3) The CO stretching vibration couples with the CC stretching vibration. (4) The phase transitions take place at 1.8 and 4 GPa in the crystal. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Layer silicates F‐ and OH‐apophyllites, KCa4Si8O20(F, OH)·8H2O, have been investigated by Raman spectroscopy at hydrostatic and nonhydrostatic pressures up to ~8 GPa in diamond anvil cells using a 4 : 1 methanol–ethanol mix as pressure‐transmitting medium. Our experiments show that at hydrostatic compression, apophyllites retain their crystalline states (i.e. no amorphization) up to 5 GPa. The wavenumbers of most bands exhibit linear dependences on pressure, except for a few ones, e.g. at 162 and 3565 cm–1 in OH‐form (160.5 and 3558 cm–1 in F‐form) that show nonlinear dependences. Nonhydrostatic compression with additional uniaxial loading induces amorphization of apophyllites. The majority of the bands in OH‐apophyllite decreases markedly in intensity and shows considerable broadening under nonhydrostatic compression up to 3–6 GPa. In addition, the wavenumbers of several bands at nonhydrostatic compression exhibit considerable nonlinear dependences on pressure with strong hysteresis. These bands are mainly associated with vibrations of the interlayer ions and molecules and also of stretching and bending silicate sheets, hence being highly sensitive to the interlayer distance. Finally, we have calculated the lattice dynamics of F‐apophyllite and interpreted the majority of bands, and these data are used to explain the complex baric behavior of the bands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The results of the first structural studies (with the use of both experimental and theoretical methods) on pyrazine‐2‐amidoxime (PAOX) were shown and discussed. FT‐IR spectra were recorded in different concentrations of the PAOX in apolar solvent to check the possibility of the inter‐ or intramolecular hydrogen‐bond formation. All possible tautomers–rotamers of PAOX were then theoretically considered at the DFT(B3LYP)/6‐311+G** level in vacuo. For selected isomers, calculations were also performed at higher levels of theory {B3LYP/6‐311+G(3df,2p) and G3B3}. Based on the results of DFT calculations, the most stable isomers were found, and their total free energies and infrared spectra were calculated. The energy variation plots for the N8?C7?N9?O10 and N1?C2?C7?N9 dihedral angles were also computed to find two energy barriers, one for E/Z isomerization around the C7?N9 double bond and the other one for rotation of the pyrazinyl ring around the C2?C7 single bond. The results show that the stability of the PAOX isomers strongly depend on their configuration and orientation of the substituents. The possibilities of inter‐ and intramolecular hydrogen bonds were also experimentally and theoretically checked. Finally, a potential of mean force was determined in CHCl3 for a dimer of PAOX with hexamethylphosphoramide. Both, experimental and theoretical results are in agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Spectroscopic studies on excited‐state proton transfer of a new chromophore 2‐(2′‐benzofuryl)‐3‐hydroxychromone (BFHC) have been reported recently. In the present work, based on the time‐dependent density functional theory (TD‐DFT), the excited‐state intramolecular proton transfer (ESIPT) of BFHC is investigated theoretically. The calculated primary bond lengths and angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared (IR) vibrational spectra as well as the calculated hydrogen bonding energies. Further, hydrogen bonding strengthening manifests the tendency of excited state proton transfer. Our calculated results reproduced absorbance and fluorescence emission spectra of experiment, which verifies that the TD‐DFT theory we used is reasonable and effective. The calculated Frontier Molecular Orbitals (MOs) further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O―H coordinate, the potential energy barrier of about 14.5 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 5.4 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, using density functional theory and time‐dependent density functional theory methods, we theoretically studied the excited‐state behaviors of 3 novel 2‐(2‐hydroxyphenyl)benzothiazole (HBT) derivatives (HBT‐H‐H, HBT‐CN‐H, and HBT‐CN‐CN). Analyses about primary chemical structures such as bond lengths and bond angles, we found that all the intramolecular hydrogen bonds in these 3 structures should be strengthened in the S1 state upon the photoexcitation. Exploring the infrared vibrational spectra at the hydrogen bonds groups, we confirmed that nonsubstitutional HBT‐H‐H structure might play more important roles in the excited‐state intramolecular proton transfer (ESIPT) reaction than HBT‐CN‐H and HBT‐CN‐CN. Further, investigating vertical excitation process, it can be revealed that charge redistribution involved in hydrogen bonding moieties could facilitate the ESIPT reaction. Based on constructing potential energy curves of both S0 and S1 states, we confirmed that the substituents on HBT systems can reasonably regulate and control the ESIPT processes because of the different potential energy barriers. We deem that this present work not only elaborates the different excited‐state behaviors of HBT‐H‐H, HBT‐CN‐H, and HBT‐CN‐CN but also may play important roles in designing and developing new materials and applications involved in HBT systems in future.  相似文献   

9.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The structural, electronic and thermodynamic properties of cubic Zn3N2 under hydrostatic pressure up to 80 GPa are investigated using the local density approximation method with pseudopotentials of the ab initio norm-conserving full separable Troullier-Martin scheme in the frame of density functional theory. The structural parameters obtained at ambient pressure are in agreement with experimental data and other theoretical results. The change of bond lengths of two different types of Zn-N bond with pressure suggests that the tetrahedral Zn-N bond is slightly less compressible than the octahedral bond. By fitting the calculated band gap, the first and second order pressure coefficients for the direct band gap ofthe Zn3N2 were determined to be 1.18×10−2 eV/GPa and −2.4×10−4 eV/(GPa)2, respectively. Based on the Mulliken population analysis, Zn3N2 was found to have a higher covalent character with increasing pressure. As temperature increases, heat capacity, enthalpy, product of temperature and entropy increase, whereas the Debye temperature and free energy decrease. The present study leads to a better understanding of how Zn3N2 materials respond to compression.  相似文献   

11.
First principles molecular orbital and plane‐wave ab initio calculations have been used to investigate the structural and energetic properties of a new cage compound 2, 4, 6, 8, 12‐pentanitro‐10‐(3, 5, 6‐trinitro (2‐pyridyl))‐2, 4, 6, 8, 12‐hexaazatetracyclo [5.5.0.03,11.05,9]dodecane (PNTNPHATCD) in both the gas and solid phases. The molecular orbital calculations using the density functional theory methods at the B3LYP/6‐31G(d,p) level indicate that both the heat of formation and strain energy of PNTNPHATCD are larger than those of 2, 4, 6, 8, 10, 12‐hexanitro‐2, 4, 6, 8, 10, 12‐hexaazatetracyclo [5.5.0.0.0] dodecane (CL‐20). The infrared spectra and the thermodynamic property in gas phase were predicted and discussed. The calculated detonation characteristics of PNTNPHATCD estimated using the Kamlet–Jacobs equation equally matched with those of CL‐20. Bond‐breaking results on the basis of natural bond orbital analysis imply that C–C bond in cage skeleton, C–N bond in pyridine, and N–NO2 bond in the side chain of cage may be the trigger bonds in the pyrolysis. The structural properties of PNTNPHATCD crystal have been studied by a plane‐wave density functional theory method in the framework of the generalized gradient approximation. The crystal packing predicted using the Condensed‐phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force fields belongs to the Pbca space group, with the lattice parameters a = 20.87 Å, b = 24.95 Å, c = 7.48 Å, and Z = 8, respectively. The results of the band gap and density of state suggest that the N–NO2 bond in PNTNPHATCD may be the initial breaking bond in the pyrolysis step. As the temperature increases, the heat capacity, enthalpy, and entropy of PNTNPHATCD crystal all increase, whereas the free energy decreases. Considering that the cage compound has the better detonation performances and stability, it may be a superior high energy density compound. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(3‐chlorophenylcarbamoyl) phenyl acetate were studied. Vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes and the normal modes are assigned by potential energy distribution (PED) calculations. Simultaneous IR and Raman activation of the CO stretching mode shows the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with the reported values. Analysis of the phenyl ring modes shows that C C stretching mode is equally active as strong bands in both IR and Raman, which can be interpreted as the evidence of intramolecular charge transfer via conjugated ring path and is responsible for hyperpolarizability enhancement leading to nonlinear optical activity. The red‐shift of the NH‐stretching wavenumber in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
High‐pressure Raman measurements on single‐wall carbon nanotubes (SWNTs) have been carried out in a diamond anvil cell by using two wavelength lasers: 830 and 514.5 nm. Irrespective of using a pressure transmitting medium (PTM) or not, we found that nanotubes undergo similar transformations under pressure. The pressure‐induced changes in Raman signals at around 2 and 5 GPa are attributed to the nanotube cross‐section transitions from circle to ellipse and then to a flattened shape, respectively. Especially with pressure increasing up to 15–17 GPa, we observed that the third transition takes place in both the Raman wavenumber and the linewidth of G‐band. We propose explanations that the interlinked configuration with sp3 bonds forms in the bundles of SWNTs under pressure, which was the cause for the occurrence of those Raman anomalies, similar to the structural‐phase transition of graphite above 14 GPa. Our TEM observations and Raman measurements on the decompressed samples support this transition picture. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The kinetics of the reactions of 2,4‐dinitrofluorobenzene (DNFB) and 2,4‐dinitrochlorobenzene (DNClB) with 2‐guanidinobenzimidazole (2‐GB) at 40 ± 0.2 °C in dimethylsulphoxide (DMSO), toluene, and in toluene–DMSO mixtures, and with 1‐(2‐aminoethyl)piperidine (2‐AEPip) and N‐(3‐aminopropyl)morpholine (3‐APMo) in toluene at 25 ± 0.2 °C were studied under pseudo first‐order conditions. For the reactions of 2‐GB carried out in pure DMSO, the second‐order rate coefficients were independent of the amine concentration. In contrast, the reactions of 2‐GB with DNFB in toluene, showed a kinetic behaviour consistent with a base‐catalysed decomposition of the zwitterionic intermediate. These results suggest an intramolecular H‐bonding of 2‐GB in toluene, which is not present in DMSO. To confirm this interpretation the reactions were studied in DMSO–toluene mixtures. Small amounts of DMSO produce significant increase in rate that is not expected on the basis of the classical effect of a dipolar aprotic medium; the effect is consistent with the formation of a nucleophile/co‐solvent mixed aggregate. For the reactions of 3‐APMo with both substrates in toluene, the second‐order rate coefficients, kA, show a linear dependence on the [amine]. 3‐APMo is able to form a six‐membered ring by an intramolecular H‐bond which prevents the formation of self‐aggregates. In contrast, a third order was observed in the reactions with 2‐AEPip: these results can be interpreted as a H‐bonded homo‐aggregate of the amine acting as a better nucleophile than the monomer. Most of these results can be well explained within the frame of the ‘dimer nucleophile’ mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In the present work, we theoretical study the sensing mechanism of a new fluoride chemosensor (E)‐2‐(2‐(dimethylamino)ethyl)‐6‐(4‐hydroxystyryl)‐1H‐benzo[de]‐isoquinoline‐1,3(2H)‐dione (the abbreviation is NIM ). Based on density functional theory and time‐dependent density functional theory methods, the fluoride anion response mechanism has been confirmed via constructing potential energy curve. The exothermal deprotonation process along with the intermolecular hydrogen bond O–H···F reveals the uniqueness of detecting F?. After capturing hydrogen proton forming NIM‐A anion configuration, a new absorption peak around 655 nm appears in dimethyl sulfoxide solvent. In addition, the emission of NIM can be quenched when adding F? has been also confirmed. Due to the twisted intramolecular charge transfer character NIM‐A‐S 1 form, we further verify the experimental phenomenon. The theoretical electronic spectra (vertical excitation energies and fluorescence peak) reproduced previous experimental results (ACS Appl. Mater. Interfaces 2014, 6, 7996), which not only reveals the rationality of our theoretical level used in this work but also confirms the correctness of geometrical attribution. In view of the excitation process, the strong intramolecular charge transfer process of S0 → S1 transition explain the redshift of absorption peak for NIM with the addition of fluoride anion. This work presents a straightforward sensing mechanism (deprotonation process) of fluoride anion for the novel NIM chemosensor.  相似文献   

16.
The ―NH2, ―NO2, ―NHNO2, ―C(NO2)3 and ―CF(NO2)2 substitution derivatives of 4,4′,5,5′‐tetranitro‐2,2′‐1H,1′H‐2,2′‐biimidazole were studied at B3LYP/aug‐cc‐pVDZ level of density functional theory. The crystal structures were obtained by molecular mechanics (MM) methods. Detonation properties were evaluated using Kamlet–Jacobs equations based on the calculated density and heat of formation. The thermal stability of the title compounds was investigated via the energy gaps (?ELUMO ? HOMO) predicted. Results show that molecules T5 (D = 10.85 km·s?1, P = 57.94 GPa) and T6 (D = 9.22 km·s?1, P = 39.21 GPa) with zero or positive oxygen balance are excellent candidates for high energy density oxidizers (HEDOs). All of them appear to be potential explosives compared with the famous ones, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetraazocane (HMX, D = 8.96 km·s?1, P = 35.96 GPa) and hexanitrohexaazaisowurtzitane (CL‐20, D = 9.38 km·s?1, P = 42.00 GPa). In addition, bond dissociation energy calculation indicates that T5 and T6 are also the most thermally stable ones among the title compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The optical properties of several azobenzene derivatives were modulated by varying the dipole moments and conjugation lengths of the D‐π‐A systems. The relationship between the structure and absorption spectrum and polarizability was studied in the gas phase, THF and MeOH solutions, respectively, by using the density functional theory. The calculated absorption spectra and second‐order polarizabilities are in good agreement with the available experimental observations. In comparison with the D‐π‐A monomer, the H‐shaped D‐π‐A dimer almost doubles the dipole moments and hence increases the second‐order polarizabilities, without a significant shift in the maximum absorption bands. The addition of another azobenzol group between electron‐donating and ‐accepting groups increases the second‐order polarizabilities by 4–6 times, but leads to an evident red‐shift of about 65–80 nm in spectra. The relative second‐order polarizability of the halogen‐substituted derivatives is in the sequence of ? CF3 > ? F > ? Cl > ? Br, without obvious substituent effects on the optical transparency. The D‐π‐A chromophores with the strong electron‐donating (amino) and ‐accepting (acetyl) substituent present the larger second‐order polarizabilities, at the cost of about 20 nm red‐shift of the maximum absorption lengths relative to the halogen‐substituted species. It is also demonstrated that both the linear and nonlinear optical properties augment with the increase in solvent polarity, accompanied by a red‐shift in the wavelengths of maximum absorption by about 18 and 23 nm, respectively, in THF and MeOH solutions. The changes in optical properties upon the structural modifications are further rationalized by the electronic structures of various H‐shaped dimers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The dependence of the Si–O stretching vibration line intensity in the IR spectrum of kaolinite on the humidity of this mineral has been experimentally investigated. The experimental data were interpreted on the basis of density functional theory (DFT) calculations with allowance for the real crystallographic features of the kaolinite sample, determined by structural analysis. Some specific features of the intensity behavior in the plastic state are revealed, which can be used to develop techniques for determining its limits. The differences in the O–H bond lengths and H–O–H angles for the H2O molecules adsorbed by basal surfaces and located in the porous space of the mineral are determined. Based on the DFT data, it was found that bond lengths and bond angles for a water molecule adsorbed on the siloxane surface are systematically smaller than for a water molecule adsorbed on the hydroxyl surface.  相似文献   

19.
In this work, based on the density functional theory and time‐dependent density functional theory methods, the properties of the 2 intramolecular hydrogen bonds (O1‐H2···N3 and O4‐H5···N6) of a new photochemical sensor 4‐(3‐(benzo[d]thiazol‐2‐yl)‐5‐tert‐butyl‐4‐hydroxybenzyl)‐2‐(benzo[d]thiazol‐2‐yl)‐6‐tert‐butyl phenol (Bis‐HPBT) have been investigated in detail. The calculated dominating bond lengths and bond angles about these 2 hydrogen bonds (O1‐H2···N3 and O4‐H5···N6) demonstrate that the intramolecular hydrogen bonds should be strengthened in the S1 state. In addition, the variations of hydrogen bonds of Bis‐HPBT have been also testified based on infrared vibrational spectra. Our theoretical results reproduced absorption and emission spectra of the experiment, which verifies that the theoretical level we used is reasonable and effective in this work. Further, hydrogen bonding strengthening manifests the tendency of excited state intramolecular proton transfer (ESIPT) process. Frontier molecular orbitals depict the nature of electronically excited state and support the ESIPT reaction. According to the calculated results of potential energy curves along stepwise and synergetic O1‐H2 and O4‐H5 coordinates, the potential energy barrier of approximately 1.399 kcal/mol is discovered in the S1 state, which supports the single ESIPT process along with 1 hydrogen bond of Bis‐HPBT. In other words, the proton transfer reaction can be facilitated based on the electronic excitation effectively. In turn, through the process of radiative transition, the proton‐transfer Bis‐HPBT‐SPT form regresses to the ground state with the fluorescence of 539 nm.  相似文献   

20.
The Fourier transform infrared (4000–400 cm−1) and Fourier transform Raman (3500–500 cm−1) spectra of 4‐hydroxy‐3‐(3‐oxo‐1‐phenylbutyl)‐2H‐1‐benzopyran‐2‐one (Warfarin) have been measured and calculated. The structure optimization has been made using density functional theory (DFT) calculations. Complete vibrational assignments of the observed spectra have been compared with theoretical wavenumbers. The wavenumber increasing in the methyl group shows the electronic hyperconjugation effect. The natural bond orbital (NBO) analysis reveals the hyperconjugation interaction and the intramolecular hydrogen bonding. The first‐order hyperpolarizability has been calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号