共查询到20条相似文献,搜索用时 15 毫秒
1.
Sheng‐Huei Hsiao Pei‐Chi Chang Hui‐Min Wang Yu‐Ruei Kung Tzong‐Ming Lee 《Journal of polymer science. Part A, Polymer chemistry》2014,52(6):825-838
A novel triphenylamine (TPA)‐containing bis(ether anhydride) monomer, namely 4,4′‐bis(3,4‐dicarboxyphenoxy)triphenylamine dianhydride, was synthesized and reacted with various aromatic diamines leading to a series of new poly(ether‐imide)s (PEI). Most of these PEIs were soluble in organic solvents and could be easily solution cast into flexible and strong films. The polymer films exhibited good thermal stability with glass‐transition temperatures in the range 211–299 °C. The polymer films exhibited reversible electrochemical processes and stable color changes (from transparent to navy blue) with high coloration efficiency and contrast ratio upon electro‐oxidation. During the electrochemical oxidation process, a crosslinked polymer structure was developed due to the coupling reaction between the TPA radical cation moieties in the polymer chains. These polymers can be used to fabricate electrochromic devices with high coloration efficiency, high redox stability, and fast response time. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 825–838 相似文献
2.
Guey‐Sheng Liou Kai‐Han Lin 《Journal of polymer science. Part A, Polymer chemistry》2009,47(8):1988-2001
A new triphenylamine‐based polyamide I was prepared by direct polycondensation of AB‐type monomer, 4‐amino‐4′‐carboxy‐4″‐methoxytriphenylamine ( 4 ), in the presence of triphenyl phosphite and pyridine as condensation agents. The obtained polyamide I showed excellent solubility in aprotic polar solvents such as NMP, DMAc, DMF, and DMSO and could be cast into transparent film with weight‐average molecular weight (Mw = 63,400) and polydispersity index (PDI = 1.79). The polyamide I exhibited good thermal stability with relatively high glass‐transition temperature (282 °C), 10% weight‐loss temperature above 470 °C under a nitrogen atmosphere, and char yield at 800 °C in nitrogen higher than 64%. It also showed maximum ultraviolet‐visible absorption at 362 nm and exhibited fluorescence emission maxima at 493 nm in NMP solution with fluorescence quantum yield 4.4%. Cyclic voltammogram of polyamide I film cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple at 0.72 V (oxidation onset potential) versus Ag/AgCl in acetonitrile solution and revealed good stability of the electrochromic characteristic with a color change from colorless to green at applied potentials ranging from 0.00 to 1.10 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1988–2001, 2009 相似文献
3.
Hui‐Min Wang Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2014,52(8):1172-1184
Three series of aromatic polyimides with 4‐(carbazol‐9‐yl)triphenylamine moieties were prepared from the polycondensation reactions of 4,4′‐diamino‐4″‐(carbazol‐9‐yl) triphenylamine (1), 4,4′‐diamino‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)triphenylamine (t‐Bu‐1), and 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl)triphenylamine (MeO‐1), respectively, with various commercially available tetracarboxylic dianhydrides. In addition to high thermal stability and good film‐forming ability, the resulting polyimides exhibited an ambipolar electrochromic behavior. The polyimides based on t‐Bu‐1 and MeO‐1 revealed higher redox‐stability and enhanced electrochromic performance than the corresponding ones based on 1 because the active sites of their carbazole units are blocked with bulky t‐butyl or electron‐donating methoxy groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1172–1184 相似文献
4.
Sheng‐Huei Hsiao Ying‐Hsiu Hsiao Yu‐Ruei Kung 《Journal of polymer science. Part A, Polymer chemistry》2016,54(9):1289-1298
A novel morpholinyl‐substituted, triphenylamine‐based diamine monomer, namely 4,4′‐diamino‐4″‐(4‐morpholinyl)triphenylamine, was synthesized and polymerized with various aromatic dicarboxylic acids via the phosphorylation polyamidation reaction leading to a series of electroactive aromatic polyamides (aramids). All aramids were readily soluble in polar organic solvents and could be solution cast into tough and flexible films with high thermal stability. Cyclic voltammograms of the aramid films on the indium‐tin oxide‐coated glass substrate exhibited a pair of reversible oxidation waves with very low onset potentials of 0.36 − 0.41 V (vs. Ag/AgCl) in acetonitrile solution. The polymer films showed reversible electrochemical oxidation accompanied by strong color changes with high coloration efficiency, high contrast ratio, and rapid switching time. The optical transmittance change (Δ%T) at 650 nm between the neutral state and the fully oxidized state is up to 90%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1289–1298 相似文献
5.
Hui‐Min Wang Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2011,49(2):337-351
A new bis(triphenylamine)‐type dicarboxylic acid monomer, N,N‐bis(4‐carboxyphenyl)‐N′,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was prepared by a well‐established procedure and led to a new family of redox‐active aromatic polyamides with di‐tert‐butyl‐substituted N,N,N′,N′‐tetraphenylphenylenediamine (TPPA) segments. The resulting polyamides were amorphous with good solubility in many organic solvents, and most of them could be solution cast into flexible polymer films. The polyamides exhibited high thermal stability with glass‐transition temperatures in the range of 247–293 °C and 10% weight‐loss temperatures in excess of 500 °C. They showed well‐defined and reversible redox couples during oxidative scanning, with a strong color change from a colorless or pale yellowish neutral form to green and blue oxidized forms. They had enhanced redox stability and electrochromic performance when compared with the corresponding analogs without tert‐butyl substituents on the TPPA unit. The polyamide with TPPA units in both the diacid and diamine components shows multicolored electrochromic behavior. A polyamide containing both the cathodic coloring anthraquinone chromophore and the anodic coloring TPPA chromophore has the ability to show red, green, and blue states, toward single‐component RGB electrochromics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
6.
Hui‐Min Wang Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2014,52(2):272-286
New series aromatic polyamides with (carbazol‐9‐yl)triphenylamine units were synthesized from a newly synthesized diamine monomer, 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl) triphenylamine, and aromatic dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides exhibit good solubility in many organic solvents and can be solution‐cast into flexible and strong films with high thermal stability. They show well‐defined and reversible redox couples during oxidative scanning, with a strong color change from colorless neutral form to yellowish green and blue oxidized forms at applied potentials scanning from 0.0 to 1.3 V. They show enhanced redox‐stability and electrochromic performance as compared to the corresponding analogs without methoxy substituents on the active sites of the carbazole unit. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 272–286 相似文献
7.
Guey‐Sheng Liou Hui‐Wen Chang Kai‐Han Lin Yuhlong Oliver Su 《Journal of polymer science. Part A, Polymer chemistry》2009,47(8):2118-2131
A series of novel triphenylamine‐based polymers were synthesized from benzaldehyde and triphenylamine derivatives. All the polymers having high molecular weight are readily soluble in many organic solvents and could be solution‐cast into amorphous films. They had glass transition temperatures (Tgs) in the range of 193–217 °C, and 10% weight loss temperatures in excess of 475 °C. Cyclic voltammograms of all polymers showed reversible oxidation redox peaks and Eonset around 0.42–0.90 V, indicating that the polymers are electrochemically active and stable. In addition, all these polymers revealed photochemical characteristics in conformity with their electrochromic characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2118–2131, 2009 相似文献
8.
New electroactive and electrochromic aromatic polyamides with ether‐linked bis(triphenylamine) units 下载免费PDF全文
Sheng‐Huei Hsiao Shou‐Lun Cheng 《Journal of polymer science. Part A, Polymer chemistry》2015,53(3):496-510
A new class of electroactive polyamides with ether‐linked bis(triphenylamine) [O(TPA)2] units were prepared through the direct phosphorylation polycondensation from N,N‐di(4‐aminophenyl)‐N′,N′‐diphenyl‐4,4′‐oxydianiline and aromatic dicarboxylic acids. These polyamides were amorphous with good solubility in many organic solvents, such as NMP and DMAc, and could be solution‐cast into strong and flexible polymer films. Their decomposition temperatures (Td) at a 10% weight‐loss in nitrogen and air were recorded at 556–568 °C and 537–555 °C, respectively. The glass‐transition temperatures (Tg) of all the polyamides were observed in the range of 218?253 °C by DSC. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited two reversible oxidation redox couples at 0.80–0.82 V and 0.96–0.98 V versus Ag/AgCl in an electrolyte containing acetonitrile solution. The polyamide films showed excellent electrochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and purple oxidized forms at applied potentials ranging from 0 to 1.2 V. These polymers can also be used to fabricate electrochromic devices, and they showed high coloration efficiency, high redox stability, and fast response time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 496–510 相似文献
9.
Sheng‐Huei Hsiao Guey‐Sheng Liou Yi‐Chun Kung Tzu‐Jung Hsiung 《Journal of polymer science. Part A, Polymer chemistry》2010,48(15):3392-3401
A new triphenylamine‐based diamine monomer, 4,4′‐diamino‐2″,4″‐dimethoxytriphenylamine ( 2 ), was synthesized from readily available reagents and was reacted with various aromatic dicarboxylic acids to produce a series of aromatic polyamides ( 4a–h ) containing the redox‐active 2,4‐dimethoxy‐substituted triphenylamine (dimethoxyTPA) unit. All the resulting polyamides were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. These polymers exhibited good thermal stability with glass transition temperatures of 243–289 °C and softening temperatures of 238–280 °C, 10% weight loss temperatures in excess of 470 °C in nitrogen, and char yields higher than 60% at 800 °C in nitrogen. The redox behaviors of the polymers were examined using cyclic voltammetry (CV). All these polyamides showed two reversible oxidation processes in the first CV scan. The polymers also displayed low ionization potentials as a result of their dimethoxyTPA moieties. In addition, the polymers displayed excellent stability of electrochromic characteristics with coloration change from a colorless neutral state to green and blue‐purple oxidized states. These anodically coloring polyamides showed high green coloration efficiency (CE = 329 cm2/C), high contrast of optical transmittance change (ΔT% = 84% at 829 nm), and long‐term redox reversibility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3392–3401, 2010 相似文献
10.
Cha‐Wen Chang Hung‐Ju Yen Kuan‐Yeh Huang Jui‐Ming Yeh Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2008,46(24):7937-7949
Four series of polyimides I – VI with pendent triphenylamine (TPA) units having inherent viscosities of 0.44–0.88 dL/g were prepared from four diamines with two commercially available tetracarboxylic dianhydrides via a conventional two‐step procedure that included a ring‐opening polyaddition to give polyamic acids, followed by chemical cyclodehydration. These polymers were amorphous and could afford flexible films. All the polyimides had useful levels of thermal stability associated with high softening temperatures (279–300 °C), 10% weight‐loss temperatures in excess of 505 °C, and char yields at 800 °C in nitrogen higher than 58%. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyimide films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited a or two reversible oxidation couples at 0.65–0.78 and 1.00–1.08 V versus Ag/AgCl in acetonitrile solution. The polymer films revealed electrochromic characteristics with a color change from neutral pale yellowish to blue doped form at applied potentials ranging from 0.00 to 1.20 V. The CO2 permeability coefficients (P) and permeability selectivity (P/P) for these polyimide membranes were in the range of 4.73–16.82 barrer and 9.49–51.13, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7937–7949, 2008 相似文献
11.
Serife O. Hacioglu Sinem Toksabay Merve Sendur Levent Toppare 《Journal of polymer science. Part A, Polymer chemistry》2014,52(4):537-544
In this study, a series of benzotriazole (BTz) and triphenylamine (TPA)‐based random copolymers; poly4‐(5‐(2‐dodecyl‐7‐methyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)thiophen‐2‐yl)‐N‐(4‐(5‐methylthiophen‐2‐yl)phenyl)‐N‐phenylaniline ( P1 ), poly4′‐(2‐dodecyl‐7‐methyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)‐N‐(4′‐methyl‐[1,1′‐biphenyl]‐4‐yl)‐N‐phenyl‐[1,1′‐biphenyl]‐4‐amine ( P2 ), and poly4‐(5′‐(2‐dodecyl‐7‐(5‐methylthiophen‐2‐yl)?2H‐benzo[d][1,2,3]triazol‐4‐yl)‐[2,2′‐bithiophen]‐5‐yl)‐N‐(4‐(5‐methylthiophen‐2‐yl)phenyl)‐N‐phenylaniline ( P3 ) were synthesized to investigate the effect of TPA unit and π‐bridges on electrochemical and spectroelectrochemical properties of corresponding polymers. The synthesis was carried out via Stille coupling for P1 , P3 , and Suzuki coupling for P2 . Electrochemical and spectral results showed that P1 has an ambipolar character, in other words it is both p‐type and n‐type dopable, whereas P2 and P3 have only p‐doping property. Effect of different π‐bridges and TPA unit on the HOMO and LUMO energy levels, switching time, and optical contrast were discussed. All polymers are promising materials for electrochromic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 537–544 相似文献
12.
Guey‐Sheng Liou Hwei‐Wen Chen Hung‐Ju Yen 《Journal of polymer science. Part A, Polymer chemistry》2006,44(13):4108-4121
A series of novel poly(amine amide)s ( IIa – IIl ) with pendent N‐carbazolylphenyl units having inherent viscosities of 0.25–1.06 dL/g were prepared via direct phosphorylation polycondensation from various dicarboxylic acids and a carbazole‐based aromatic diamine. Except for poly(amine amide) IIc , derived from trans‐1,4‐cyclohexanedicarboxylic acid, all the other amorphous poly(amine amide)s were readily soluble in many polar solvents, such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone (NMP), and could be cast into transparent and flexible films. The aromatic poly (amine amide)s had useful levels of thermal stability associated with relatively high glass‐transition temperatures (268–331 °C), 10% weight loss temperatures in excess of 540 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers exhibited maximum ultraviolet–visible absorption at 293–361 nm in NMP solutions. Their photoluminescence in NMP solutions exhibited fluorescence emission maxima around 362 and 448–499 nm for aromatic–aliphatic poly(amine amide)s IIa – IIc and aromatic poly (amine amide)s IId – IIl , respectively. The fluorescence quantum yield in NMP solutions ranged from 0.34% for IIj to 4.44% for IIa . The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine amide) films cast onto an indium tin oxide coated glass substrate exhibited reversible oxidation at 0.81 V and irreversible oxidation redox couples at 1.20 V versus Ag/AgCl in acetonitrile solutions, and they revealed excellent stability of the electrochromic characteristics, with a color change from yellow to green at applied potentials ranging from 0.00 to 1.05 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4108–4121, 2006 相似文献
13.
Li‐Ting Huang Hung‐Ju Yen Cha‐Wen Chang Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2010,48(21):4747-4757
A series of novel poly(amine–amide–imide)s (PAAIs) based on tetraphenyl‐p‐phenylenediamine (TPPA) units showing anodically/cathodically electrochromic characteristic with three primary colors [red, green, and blue (RGB)] were prepared from the direct polycondensation of the TPPA‐based diamine monomer with various aromatic bis(trimellitimide)s. These multicolored electrochromic polymers were readily soluble in polar organic solvents and showed excellent thermal stability associated with high glass‐transition temperatures (288–314 °C) and high‐char yield (higher than 60% at 800 °C in nitrogen). The PAAI films revealed electrochemical oxidation and reduction accompanied with high contrast of optical transmittance color changes from the pale yellow neutral state to the green/blue oxidized state and red reduced state, respectively. The electrochromic films had high‐coloration efficiency (CE = 178 and 242 cm2/C at the first and the second stages, respectively), low‐switching time, and good redox stability, which still retained a high electroactivity after long‐term redox cycles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
14.
Yi‐Chun Kung Wen‐Fu Lee Sheng‐Huei Hsiao Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2011,49(10):2210-2221
A series of novel polyimides based on N,N‐di(4‐aminophenyl)‐1‐aminopyrene and aromatic or alicyclic tetracarboxylic dianhydrides were synthesized. The polymers exhibited good solubility in many polar organic solvents and could afford robust films via solution casting. The polyimides derived from aromatic dianhydrides exhibited high thermal stability and high glass‐transition temperatures (333–364 °C). Cyclic voltammetry studies of the polymer films showed that these polyimides are both p and n dopable and have multicolored electrochromic states. For the polyimides derived from alicyclic dianhydrides, they revealed a strong blue‐light emission with high fluorescence quantum yields (?PL > 45%) and a marked solvatochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
15.
Mingying Yin Ying Yan Justin P. Cole Erik B. Berda Fangfei Li Xincai Liu Ce Wang Danming Chao 《Journal of polymer science. Part A, Polymer chemistry》2016,54(20):3343-3349
Electroactive polyamides containing dense oligoaniline functionalizations (PAs) were synthesized via oxidative coupling polymerization followed by postpolymerization functionalization, and exhibit excellent solubility, good thermal stability and reversible electroactivity. Interesting spectroscopic changes that occurred through chemical oxidation have been shown, which demonstrate the potential of PAs as an electrochromic material. As a result, the electrochromic behaviors of PAs were investigated in detail, exhibiting high contrast value, moderate switching time, and satisfactory coloration efficiency. Tunable conductive and dielectric properties have also been accomplished by varying the incorporation of oligoaniline segments. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3343–3349 相似文献
16.
Hung‐ju Yen Shiue‐ming Guo Jui‐ming Yeh Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2011,49(16):3637-3646
Two series of polyimides I – II with methyl‐substituted triphenylamine units were prepared from the diamines, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 1 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ), and two commercially available tetracarboxylic dianhydrides via a conventional two‐step chemical imidization. All the polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass transition temperatures (266–340 °C) and high char yields (higher than 49% at 800 °C in nitrogen). The polymer films showed reversible electrochemistry/electrochromism accompanied by a color change from neutral pale yellow to green oxidized form with good coloration efficiency, switching time, and stability. The CO2 permeability coefficients (PCO2) and permeability selectivity (PCO2/PCH4) for these polyimide membranes were in the range of 34.1–229.2 barrer and 21.3–28.9, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
17.
Yi‐Chun Kung Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2011,49(16):3475-3490
A series of novel aromatic polyamides with pyrenylamine in the backbone were prepared from a newly synthesized dicarboxylic acid monomer, N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene, and various aromatic diamines via the phosphorylation polyamidation technique. These polyamides were readily soluble in many organic solvents and could be solution‐cast into tough and amorphous films. They had useful levels of thermal stability with glass‐transition temperatures in the range of 276–342 °C and 10% weight loss temperatures in excess of 500 °C. The dilute N‐methyl‐2‐pyrrolidone (NMP) solutions of these polymers exhibited fluorescence maxima around 455–540 nm with quantum yields up to 56.9%. The polyamides also showed remarkable solvatochromism of the emission spectra. Their films showed reversible electrochemical oxidation and reduction accompanied by strong color changes from colorless neutral state to purple oxidized state and to yellow reduced state. The polyamide 4g containing the pyrenylamine units in both diacid and diamine sides exhibited easily accessible p‐ and n‐doped states, together with multicolored electrochromic behaviors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
18.
Guey‐Sheng Liou Sheng‐Huei Hsiao Mina Ishida Masaaki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》2002,40(16):2810-2818
A new triphenylamine‐containing aromatic diamine, N, N′‐bis(4‐aminophenyl)‐N, N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluoronitrobenzene, followed by catalytic reduction. A series of novel aromatic polyamides with triphenylamine units were prepared from the diamine and various aromatic dicarboxylic acids or their diacid chlorides via the direct phosphorylation polycondensation or low‐temperature solution polycondensation. All the polyamides were amorphous and readily soluble in many organic solvents such as N, N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with relatively high glass‐transition temperatures (257–287 °C), 10% weight‐loss temperatures in excess of 550 °C, and char yields at 800 °C in nitrogen higher than 72%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2810–2818, 2002 相似文献
19.
Han‐Yu Wu Kun‐Li Wang Der‐Jang Liaw Kueir‐Rarn Lee Juin‐Yih Lai 《Journal of polymer science. Part A, Polymer chemistry》2010,48(7):1469-1476
A novel dibromo compound containing unsymmetrical substituted bi‐triarylamine was synthesized. A conjugated polymer was prepared via the Suzuki coupling from the newly prepared dibromo compound and 9,9‐dioctylfluorene‐2,7‐bis(trimethyleneboronate). The glass transition temperature (Tg) of the conjugated polymer was 140 °C, 10% weight‐loss temperatures (Td10) in nitrogen was 458 °C, and char yield at 800 °C in nitrogen higher than 64%. Cyclic voltammogram of the polymer film cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited two reversible oxidation redox couples at 0.70 and 1.10 V versus Ag/Ag+ in acetonitrile solution. The polymer films revealed excellent stability of electrochromic characteristics, with a color change from yellow green of the neutral form to the dark green and blue of oxidized forms at applied potentials ranging from 0 to 1.3 V. The color switching time and bleaching time were 4.25 and 7.22 s for 860 nm and 5.51 s and 6.48 s for 560 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1469–1476, 2010 相似文献
20.
Tzy‐Hsiang Su Sheng‐Huei Hsiao Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2005,43(10):2085-2098
We report the preparation and characterization of a series of novel electrochromic, aromatic poly(amine amide)s with pendent triphenylamine units. The synthesis proceeded via direct phosphorylation polycondensation between a novel diamine, N,N‐bis(4‐aminophenyl)‐N′,N′‐diphenyl‐1,4‐phenylenediamine, and various aromatic dicarboxylic acids. All the poly(amine amide)s were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent, tough, and flexible films with good mechanical properties. They exhibited good thermal stability and 10% weight‐loss temperatures above 540 °C. Their glass‐transition temperatures were 263–290 °C. These polymers in N‐methyl‐2‐pyrrolidinone solutions exhibited strong ultraviolet–visible absorption peaks at 307–358 nm and photoluminescence peaks around 532–590 nm in the green region. The hole‐transporting and electrochromic properties were studied with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of poly(amine amide) films prepared by the casting of polymer solutions onto an indium tin oxide coated glass substrate exhibited two reversible oxidation redox couples at 0.65 and 1.03 V versus Ag/AgCl in an acetonitrile solution. All the poly(amine amide)s showed excellent stability with respect to their electrochromic characteristics; the color of the films changed from pale yellow to green and then blue at 0.85 and 1.25 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2085–2098, 2005 相似文献