首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   

2.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophobic poly (lauryl methacrylate), (PLMA) block and one hydrophilic poly (oligo ethylene glycol methacrylate) (POEGMA) block are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR and FT‐IR spectroscopy, and DSC. The PLMA‐b‐POEGMA amphiphilic block copolymers self‐assemble in nanosized complex nanostructures resembling compound micelles when inserted in aqueous media, as supported by light scattering and TEM measurements. The encapsulation and release of the model, hydrophobic, nonsteroidal anti‐inflammatory drug indomethacin in the polymeric micelles is also investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 155–163  相似文献   

3.
Poly(N‐vinylcaprolactam) (PVCL) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) are well known for their thermoresponsive behavior in aqueous solutions. Indeed, they display lower critical solution temperatures (LCST) in the physiological range, which makes them interesting for biomedical devices and use in drug delivery systems. Homopolymers of N‐vinylcaprolactam and di(ethylene glycol) methyl ether methacrylate as well as copolymers thereof were synthesized by solution and direct miniemulsion polymerizations. The cloud points of the copolymers in aqueous solution were investigated as a function of temperature, comonomer ratio, and in the presence of model pharmaceutical ingredients. By variation of the comonomer ratio, it was possible to control the cloud point temperature between 26 and 35 °C, which was found to be beneficial to attenuate the effect of the drugs that also altered the cloud points. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3308–3313  相似文献   

4.
We report the ring‐opening metathesis polymerization (ROMP) synthesis of novel (co)polymers containing the multiresponsive morpholino functional group [(3aR,7aS)?2‐(2‐morpholinoethyl)?3a,4,7,7a‐tetrahydro‐1H?4,7‐epoxyisoindole‐1,3(2H)‐dione ( M1 )]. All (co)polymers were prepared with the Grubbs' first generation initiator, RuCl2(PCy3)2CHPh, in CH2Cl2 or CH2Cl2/2,2,2‐trifluoroethanol solvent mixtures. M1 homopolymers exhibit a pH dependent aqueous solubility being fully soluble below pH 5.0 and above pH 6.0. At these intermediate values, the polymers exhibit molecular weight (MW) independent inverse temperature dependent solubility with measured cloud points (TCP) of 86 °C at pH 5.0 and 79 °C at pH 6.0. In the case of the lowest MW homopolymer (absolute MW of 9950 g/mol), there was a clear dependence of the TCP on the homopolymer solution concentration and varied over the range 78–88 °C. The TCP could be further tuned via the preparation of novel AB statistical copolymers. Incorporation of a permanently cationic comonomer as a more hydrophilic species resulted in an increase of the TCP at low incorporations (up to 10 mol %) and the complete disappearance of any temperature dependent solubility at 20 mol %. In a complementary approach, the TCP could also be lowered by the preparation of statistical copolymers of M1 with a more hydrophobic comonomer. Finally, we note that M1 homopolymers are also responsive to Na2SO4 and could be readily salted‐out of an aqueous solution salt at a [Na2SO4] of 2.0 M giving a third trigger for controlling aqueous solubility. These copolymers represent examples of new multiresponsive materials and demonstrate the effectiveness of ROMP as a synthetic tool for the preparation of new and interesting materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 50–58  相似文献   

5.
An approach to nanoparticles based upon the thermosensitivity of a copolyether is described. Two thermosensitive copolymers of glycidol with molar masses of 800,000 g/mol randomly substituted with ethyl isocyanate (28 and 35% substitution) were used to obtain mesoglobules. The effects of copolymer concentration and of the presence of surfactants (sodium dodecyl sulfate and hexadecyltrimethylammonium bromide) on the size of the mesoglobules formed were investigated. The obtained mesoglobules were monomodal and of narrowly distributed diameters, as shown by dynamic light scattering and atomic force microscopy measurements. The radical nucleated copolymerization of N‐isopropylacrylamide with N,N′‐methylenebisacrylamide as a crosslinker was performed in the presence of the mesoglobules. Nanoparticles of monomodal size distribution and low dispersity were obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4074–4083, 2010  相似文献   

6.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
In this article, the synthesis and self‐assembly of a novel well‐defined biocompatible amphiphilic POEGMA‐PDMS‐POEGMA triblock copolymer were studied. The copolymer was synthesized by atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) using α,ω‐dibromo polydimethylsiloxane macroinitiator (Br‐PDMS‐Br). Br‐PDMS‐Br was synthesized through the esterification of α,ω‐hydroxypropyl polydimethylsiloxane and 2‐bromoisobutyryl bromide. The structures of the copolymers were confirmed by proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The copolymers showed reversible aggregation in response to temperature cycles with a lower critical solution temperature (LCST) between 61 and 66 °C, as determined by ultraviolet‐visible spectrophotometry and dynamic light scattering. The LCST values increased in proportion to the length of the hydrophilic block and were lower than that of the POEGMA homopolymer. The self‐assembly behavior of the copolymers in aqueous solution was investigated by fluorescence spectroscopy and transmission electron microscopy. The critical micelle concentration value (1.08–0.26 10?6 mol L?1) decreased as the length of the POEGMA chain increased. The POEGMA‐PDMS‐POEGMA copolymers can easily self‐assemble into spherical micelles in aqueous solution. Such biocompatible block copolymers may be attractive candidates as ‘‘smart'' thermo‐responsive drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2684‐2691  相似文献   

8.
The algorithms for the calculation of the characteristic polynomial coefficients for the alternant edge weighted graphs of linear chains have been developed. These algorithms have been utilized to calculate the characteristic polynomials of the linear poly (p-phenylene) and the methylene substituted linear poly (p-phenylene) compounds. These compounds are found to be important materials for electro-optical and electronic applications. The recurrence relation to obtain the sum of the CP coefficients (SCPNr ){\left({S_{\rm CP}^{N_r }}\right)} of any such poly (p-phenylene) in terms of the respective sums of its lower analogs has been derived. The number of Kekulé valence structures (K) for such molecular graphs have been presented. Excellent linear correlations of logarithm of sum of CP coefficients (log  SCPNr )({\rm log} \, {S_{\rm CP}^{N_r }}) and logarithm of Kekulé valence structures count (log K) with the ambient conditions density and bulk modulus of linear poly (p-phenylene) have also been found.  相似文献   

9.
The synthesis, characterization, and postpolymerization functionalization of star copolymers by RAFT polymerization, using ethylene glycol dimethacrylate as the difunctional monomer for core formation via crosslinking, is presented in this work. The “arm first” approach was used for the synthesis of PDMAEMAnPOEGMAn double‐hydrophilic mikto‐arm stars and PDMAEMAxPLMAy amphiphilic miktoarm stars, while the “core first” approach was used for the synthesis of (PDMAEMA‐b‐POEGMA)n double‐hydrophilic star block copolymers. Methyl iodide was used as the quaternizing agent for the transformation of the star copolymers into strong cationic star polyelectrolytes, through reaction on the dimethylamino groups of PDMAEMA blocks. The stars were characterized at the molecular level by SEC and proton nuclear magnetic resonance. Preliminary light scattering experiments, using THF and H2O as the solvents, were performed in order to get information regarding the solution behavior of the novel star copolymers synthesized. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1771–1783  相似文献   

10.
A novel type of well‐defined graft copolymer, succinylated chitosan‐O‐poly(oligo(ethylene glycol)methacrylate) (SC‐POEGMA), was developed for pH‐reversible poly(ethylene glyocol) (PEG) shielding of cationic nanocarriers. Chitosan‐O‐POEGMA (CS‐POEGMA) was first synthesized via single electron transfer‐living radical polymerization of oligo(ethylene glyol) methacrylate (OEGMA) using O‐brominated chitosan (CS‐Br) as a macromolecular initiator and Cu(I)Br/1,1,4,7,10,10‐hexamethyltriethylenetetramine as a catalyst. The subsequent succinylation of the chitosan backbone gave the titled copolymers. The content of POEGMA in CS‐POEGMA could be widely modulated by varying the degree of bromination and feed ratio of OEGMA to CS‐Br, without compromising the amino density of chitosan backbone. The hierarchical assembly between SC‐POEGMA and trimethylated chitosan‐O‐poly(ε‐caprolactone) (TMC‐PCL) micelles was further studied. At pH 7.4, the stoichiometric interactions between SC and TMC segments to form polyampholyte–polyelectrolyte complexes led to the formation of PEG‐shielded micelles. The hierarchially assembled micelles could be disassembled into the pristine TMC‐PCL micelles, when the medium pH was below a certain pH (pHφ). By varying the degree of succinylation of SC‐POEGMA, the pHφ value could be facilely modulated from 6.5 to 3.5 to meet the needs for specific biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Double hydrophilic poly(ethylene oxide)‐b‐poly(N‐isopropylacrylamide) (PEO‐b‐PNIPAM) block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization, using a PEO‐based chain transfer agent (PEO‐CTA). The molecular structures of the copolymers were designed to be asymmetric with a short PEO block and long PNIPAM blocks. Temperature‐induced aggregation behavior of the block copolymers in dilute aqueous solutions was systematically investigated by a combination of static and dynamic light scattering. The effects of copolymer composition, concentration (Cp), and heating rate on the size, aggregation number, and morphology of the aggregates formed at temperatures above the LCST were studied. In slow heating processes, the aggregates formed by the copolymer having the longest PNIPAM block, were found to have the same morphology (spherical “crew‐cut” micelles) within the full range of Cp. Nevertheless, for the copolymer having the shortest PNIPAM block, the morphology of the aggregates showed a great dependence on Cp. Elongation of the aggregates from spherical to ellipsoidal or even cylindrical was observed. Moreover, vesicles were observed at the highest Cp investigated. Fast heating leads to different characteristics of the aggregates, including lower sizes and aggregation numbers, higher densities, and different morphologies. Thermodynamic and kinetic mechanisms were proposed to interpret these observations, including the competition between PNIPAM intrachain collapse and interchain aggregation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4099–4110, 2009  相似文献   

12.
Star‐shaped amphiphilic poly(ε‐caprolactone)‐block‐poly(oligo(ethylene glycol) methyl ether methacrylate) with porphyrin core (SPPCL‐b‐POEGMA) was synthesized by combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Star‐shaped PCL with porphyrin core (SPPCL) was prepared by bulk polymerization of ε‐caprolactone (CL) with tetrahydroxyethyl‐terminated porphyrin initiator and tin 2‐ethylexanote (Sn(Oct)2) catalyst. SPPCL was converted into SPPCLBr macroinitiator with 2‐bromoisobutyryl bromide. Star‐shaped SPPCL‐b‐POEGMA was obtained via ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). SPPCL‐b‐POEGMA can easily self‐assemble into micelles in aqueous solution via dialysis method. The formation of micellar aggregates were confirmed by critical micelle formation concentration, dynamic light scattering, and transmission electron microscopy. The micelles also exhibit property of temperature‐induced drug release and the lower critical solution temperature (LCST) was 60.6 °C. Furthermore, SPPCL‐b‐POEGMA micelles can reversibly swell and shrink in response to external temperature. In addition, SPPCL‐b‐POEGMA can present obvious fluorescence. Finally, the controlled drug release of copolymer micelles can be achieved by the change of temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Water soluble alternating copolymers were prepared by oxidative free radical copolymerization of 4‐vinylbenzyl methoxypoly(oxyethylene) ether (PEGSt) and molecular oxygen at 50 °C. NMR spectroscopy established alternate sequence of PEGSt and peroxy bonds ( O O ) along the polymer main‐chain. The obtained polymers show temperature induced hydrophilic to hydrophobic phase separation, confirmed by UV‐visible spectroscopy and dynamic light scattering. The cloud point temperature (TCP) of the polymers can be tuned by changing the chain length of side‐chain poly(ethylene oxide) and incorporation of hydrophobic methyl methacrylate in the copolyperoxides. Exothermic degradation of these polyperoxides was confirmed by differential scanning calorimetry and the degradation products have been characterized by electron impact mass spectroscopy. Finally, N,N‐dimethylacrylamide was polymerized in the presence of these polyperoxides in toluene, highlighting their potential as polymeric free radical initiator during polymerization of vinyl monomers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2030–2038  相似文献   

14.
It is shown how electron spin resonance spectroscopy with modulated radical initiation can be used to analyze by purely spectroscopic means the second-order termination kinetics of systems containing two different kinds of radicals. The technique is applied to species generated by photoreduction of acetone in tetraethoxy silane. The bimolecular self- and cross reactions of \documentclass{article}\pagestyle{empty}\begin{document}${\rm (CH}_{\rm 3} {\rm CH}_{\rm 2} {\rm O)}_{\rm 3} {\rm SiO\dot CHCH}_{\rm 3} (\dot R_1 )\,and\,(CH_3 )_2 \dot COH(\dot R_2 )$\end{document} are found to be encounter-controlled processes. For the cross termination the often used relation k12 = (4 k1k2)1/2 is verified experimentally.  相似文献   

15.
Two types of photoreactive water‐soluble oligo(ethylene glycol)s (OEGs; Mn = ca. 6500) were prepared by derivatization of OEG with photodimerizable groups such as cinnamates or coumarinates at both ends. Upon UV light irradiation of biscinnamated OEG in an aqueous solution, almost all trans‐cinnamate groups were isomerized to cis form in preference to dimerization even in an associated state at high concentrations of cinnamate groups, whereas dimerization via intermolecular photocycloaddition was the dominant process in methanol solution and in the film state. Coumarinate groups attached to OEG were photodimerized by UV irradiation, and this process was enhanced in an aqueous solution and in film cast from a polar solvent by hydrophobic association between coumarinate groups, resulting in the production of macromolecules. Kinetic analysis revealed that for low‐concentration aqueous solutions or a film cast from a nonpolar solvent, predominantly circular trimers to tetramers were produced on average, whereas from high‐concentration aqueous solutions or film cast from a polar solvent, mostly cyclic heptamers were produced. These results suggest that the molecular design of nanostructured, cyclic polymers of various sizes is possible by changing the concentration of aqueous solutions and cast solvents in this photoaddition system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3324–3336, 2005  相似文献   

16.
Multistimuli responsive grafted poly(ether tert‐amine) (gPEAs), which were comprised of poly(propylene oxide) (PPO) in backbone and poly(ethylene oxide) (PEO) as grafted chain, were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial poly(propylene glycol) diglycidyl ether and Jeffamine L100. These gPEAs exhibit very sharp response to temperature, pH and ionic strength with tunable cloud point (CP). The CP of gPEA aqueous solution increases with increasing the PEO content or decreasing pH value, varying from 27 to 77 °C. Compared with linear PEA101, gPEA110 of completely grafted structure in aqueous solution exhibits sharper response to temperature with ΔT around 1 °C. The results obtained from TEM and dynamic light scattering reveal that gPEAs are dispersed as uniform sized nano‐micelles in aqueous at room temperature, which can further aggregate into mesoglobules of complex structure at high temperature (>CP). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6353–6361, 2009  相似文献   

17.
Aqueous solutions of a series of monodisperse poly(N‐isopropylacrylamide)s end‐labeled with n‐butyl‐1‐pyrene at one or both chain ends (Pyn‐PNIPAMs with n = 1 or 2) were studied by turbidimetry, light scattering, and fluorescence. For a given polymer concentration and heating rate, the cloud point (Tc) of an aqueous Pyn‐PNIPAM solution, determined by turbidimetry, was found to increase with the number‐average molecular weight (Mn) of the polymer. The steady‐state fluorescence spectra and time‐resolved fluorescence decays of Pyn‐PNIPAM aqueous solutions were analyzed and all parameters retrieved from these analyses were found to be affected as the solution temperature passed through Tc, the solution cloud point, and Tm, the temperature where dehydration of PNIPAM occurred. The trends obtained by fluorescence to characterize the aqueous Pyn‐PNIPAM solutions as a function of temperature were found to be consistent with the model proposed for telechelic PNIPAM by Koga et al. in 2006. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 308–318  相似文献   

18.
This study describes the synthesis and aggregation behavior of thermosensitive poly(di(ethylene glycol) monomethyl ether methacrylate) (P(DEGMA‐ME)) conjugated with the fluorescently labeled pentapeptide glycine‐arginine‐lysine‐phenylalanine‐glycine‐dansyl (GRKFG‐Dns). The GRKFG‐Dns was obtained using Fmoc solid‐phase peptide synthesis and was modified with 2‐bromopropionic acid to initiate an atom transfer radical polymerization of di(ethylene glycol) monomethyl ether methacrylate (DEGMA‐ME). The polymerization led to a well‐defined P(DEGMA‐ME)–GRKFG‐Dns conjugate with a number average molar mass of 108,000 g/mol. The pentapeptide acted as a hydrophilic moiety that increased the phase transition temperature compared to the P(DEGMA‐ME) homopolymer of similar molar mass. The bioconjugate macromolecules aggregated in dilute aqueous solution into spherical particles (mesoglobules). The sizes of aggregates were easily controlled by changing the concentration and heating rate of the P(DEGMA‐ME)‐GRKFG‐Dns solution. The weight average molar masses and sizes of mesoglobules were determined based on light scattering measurements. Enzymatic hydrolysis of the bioconjugate in dilute solution was performed at temperatures below and above the cloud point temperature of the bioconjugate. The peptides were fully accessible to enzymatic digestion even when the macromolecules were aggregated to mesoglobules, indicating that the peptide segments in mesoglobules formed the external shell of the nanoparticles and could be easily released by enzymes. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Amphiphilic block polymers of vinyl ethers (VEs). $\rlap{--} [{\rm CH}_{\rm 2} {\rm CH}\left( {{\rm OCH}_{\rm 2} {\rm CH}_{\rm 2} {\rm NH}_{\rm 2} } \right)\rlap{--} ]_m \rlap{--} [{\rm CH}_{\rm 2} {\rm CH}\left( {{\rm OR}} \right)\rlap{--} ]_n \left( {{\rm R: }n{\rm - C}_{{\rm 16}} {\rm H}_{{\rm 33}} ,{\rm }n{\rm - C}_{\rm 4} {\rm H}_{\rm 9} ;m \simeq 40,{\rm n} = 1 - 10} \right)$ were prepared, each of which consists of a hydrophilic segment with pendant primary amino groups and a hydrophobic poly(alkyl VE) segment. Their precursors were obtained by the HI/I2-initiated sequential living cationic polymerization of an alkyl VE and a VE with a phthalimide pendant (CH2 = CHOCH2CH2Im; Im; phthalimide group), where the segment molecular weights and compositions (m/n ratio) could be controlled by regulating the feed ratio of two monomers and the concentration of hydrogen iodide. Hydrazinolysis of the imide functions gave the target polymers which were readily soluble in water under neutral conditions at room temperature. These amphiphilic block polymers lowered the surface tension of their aqueous solutions (0.1 wt%, 25°C) to a minimum ? 30 dyn/cm when the hydrophobic pendant R was n-C4H9 (n = 4–9). The polymers with n-C4H9 pendants in the hydrophobic segment exhibited a higher surface activity than those with n-C16 H33 pendants. The surface activity of the polymers also depended on the pH of the polymer solutions; the surface activity increased in more basic solutions where the ionization of the amino group (? NH2)2? NH3) is suppressed.  相似文献   

20.
Poly(oligoethylene glycol methacrylate), POEGMA, brushes were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP) on gold‐coated silicon wafers. Prior to ATRP, the substrates were grafted by brominated aryl initiators via the electrochemical reduction of a noncommercial parent diazonium salt of the formula BF4?, +N2‐C6H4‐CH(CH3)Br. The diazonium‐modified gold plates (Au‐Br) served as macroinitiators for ATRP of OEGMA which resulted in hydrophilic surfaces (Au‐POEGMA) that could be used for two distinct objectives: (i) resistance to fouling by Salmonella Typhimurium; (ii) specific recognition of the same bacteria provided that the POEGMA grafts are activated by anti‐Salmonella. The Au‐POEGMA plates were characterized by XPS, polarization modulation‐infrared reflection‐absorption spectroscopy (PM‐IRRAS) and contact angle measurements. Both Beer‐Lambert equation and Tougaard's QUASES software indicated a POEGMA thickness that exceeds the critical ~10 nm value necessary for obtaining a hydrophilic polymer with effective resistance to cell adhesion. The Au‐POEGMA slides were further activated by trichlorotriazine (TCT) in order to covalently bind anti‐Salmonella antibodies (AS). The antibody‐modified Au‐POEGMA specimens were found to specifically attach Salmonella Typhimurium bacteria. This work is another example of the diazonium salt/ATRP process to provide biomedical polymer surfaces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号