首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We review recent work on the theory for pump/probe photoemission spectroscopy of electron‐phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal‐Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. In addition, in the superconducting state, we describe how Anderson‐Higgs oscillations can be excited due to the nonlinear coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.  相似文献   

3.
Polyynes spanning from a diyne to a dodecayne with adamantyl endgroups have been synthesized using the Fritsch–Buttenberg–Wiechell rearrangement as a key step to construct the acetylenic framework. Molecular properties as a function of polyyne length have been analyzed by UV–Vis spectroscopy, cyclic voltammetry, differential scanning calorimetry, and X‐ray crystallography. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
7.
The linear and non‐linear dynamics of ion acoustic waves are investigated in three‐component magnetized plasma consisting of cold inertial ions and non‐thermal electrons and positrons. The non‐thermal components are modelled by the hybrid distribution, representing the combination of two (kappa and Cairn's) non‐thermal distributions. The relevant processes, including the slow rotation of plasma along the magnetic field axis and collision between ions and neutrals, are taken into consideration. It is shown that the non‐linear dynamics of the considered system are governed by the Zakharov–Kuznetsov equation in modified form. In the general dissipation regime, the effects of the two non‐thermal distributions on the solitary waves are compared. The effects of other plasma parameters, such as collisional and rotational frequency, are also discussed in detail.  相似文献   

8.
9.
10.
11.
12.
Spin–charge separation is known to be broken in many physically interesting one‐dimensional (1D) and quasi‐1D systems with spin–orbit interaction because of which spin and charge degrees of freedom are mixed in collective excitations. Mixed spin–charge modes carry an electric charge and therefore can be investigated by electrical means. We explore this possibility by studying the dynamic conductance of a 1D electron system with image‐potential‐induced spin–orbit interaction. The real part of the admittance reveals an oscillatory behavior versus frequency that reflects the collective excitation resonances for both modes at their respective transit frequencies. By analyzing the frequency dependence of the conductance the mode velocities can be found and their spin–charge structure can be determined quantitatively.  相似文献   

13.
Based on analytical formulae calculations and ray‐tracing simulations a low‐aberration focal spot with a high demagnification ratio was predicted for a diffractive–refractive crystal optics device with parabolic surfaces. Two Si(111) crystals with two precise parabolic‐shaped grooves have been prepared and arranged in a dispersive position (+,?,?,+) with high asymmetry. Experimental testing of the device at beamline BM05 at the ESRF provided a focal spot size of 38.25 µm at a focal distance of 1.4 m for 7.31 keV. This is the first experiment with a parabolic‐shaped groove; all previous experiments were performed with circular grooves which introduced extreme aberration broadening of the focal spot. The calculated and simulated focal size was 10.8 µm at a distance of 1.1 m at 7.31 keV. It is assumed that the difference between the measured and calculated/simulated focal spot size and focal distance is due to insufficient surface quality and to alignment imperfection.  相似文献   

14.
The polar Diels–Alder (DA) reactions of 2‐acetyl‐1,4‐benzoquinone (acBQ) with methyl substituted 1,3‐butadienes have been studied using DFT methods at the B3LYP/6‐31G(d) level of theory. These reactions are characterized by a nucleophilic attack of the unsubstituted ends of the 1,3‐dienes to the β conjugated position of the acBQ followed by ring‐closure. The reactions present a total regioselectivity and large endo selectivity. The analysis based on the global electrophilicity of the reagents at the ground state, and the natural bond orbital (NBO) population analysis at the transition states correctly explain the polar nature of these cycloadditions. The large electrophilic character of acBQ is responsible for the acceleration observed in these polar DA reactions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The self‐association and tautomerism of (E)‐isatin‐3‐4‐phenyl(semicarbazone) Ia and (E)‐N‐methylisatin‐3‐4‐phenyl(semicarbazone) IIa were investigated in solvents of various polarity. In weakly interacting non‐polar solvents, such as CHCl3 and benzene, phenylsemicarbazone concentrations above 1×10?5 mol dm?3 result in the formation of dimers or higher aggregates of E‐isomers Ia and IIa . This aggregate formation prevents room temperature E–Z isomerization of Ia and IIa to more stable Z‐isomers. In contrast to the situation in non‐polar solvents, E–Z isomerization from the monomeric form of phenylsemicarbazone Ia and IIa E‐isomers occurs in highly interactive polar solvents including MeOH and DMF only at temperatures above 70 °C. Moreover, decrease in phenylsemicarbazone concentration below 1×10?4 mol dm?3 in these highly solute–solvent interacting systems leads to aggregate dissociation, and a new hydrazonol tautomeric form with a high degree of conjugation predominates in these solutions. Theoretical calculations confirm obtained experimental results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
We consider spacetime to be a connected real 4‐manifold equipped with a Lorentzian metric and an affine connection. The 10 independent components of the (symmetric) metric tensor and the 64 connection coefficients are the unknowns of our theory. We introduce an action which is (purely) quadratic in curvature and study the resulting system of Euler–Lagrange equations. In the first part of the paper we look for Riemannian solutions, i.e. solutions whose connection is Levi‐Civita. We find two classes of Riemannian solutions: 1) Einstein spaces, and 2) spacetimes with pp‐wave metric of parallel Ricci curvature. We prove that for a generic quadratic action these are the only Riemannian solutions. In the second part of the paper we look for non‐Riemannian solutions. We define the notion of a “Weyl pseudoinstanton” (metric compatible spacetime whose curvature is purely of Weyl type) and prove that a Weyl pseudoinstanton is a solution of our field equations. Using the pseudoinstanton approach we construct explicitly a non‐Riemannian solution which is a wave of torsion in a spacetime with Minkowski metric. We discuss the possibility of using this non‐Riemannian solution as a mathematical model for the neutrino.  相似文献   

17.
Au nanoparticle (AuNP) core particles coated with a poly(N‐isopropylacrylamide) (pNIPAm) shell (Au@pNIPAm) are synthesized by seed mediated free radical polymerization. Subsequently, a temperature–light‐responsive photonic device is fabricated by sandwiching the Au@pNIPAm particles between two thin layers of Au. The optical device exhibits visual color and characteristic multipeak reflectance spectra, where peak position is primarily determined by the distance between two Au layers. Dual responsivities of the photonic device are achieved by combining the photothermal effect of AuNPs core (localized surface plasmon resonance (LSPR) effect) and the temperature responsivity of the pNIPAm shell. That is, the pNIPAm shell collapses as the temperature is increased above pNIPAm's lower critical solution temperature, either by direct heat input or heat generated by AuNPs' LSPR effect. To investigate the effect of AuNPs distribution in the microgels on the devices' photothermal responsivity, the Au@pNIPAm microgel‐based etalon devices are compared with that fabricated by AuNP‐doped pNIPAm‐based microgels; in terms of response kinetics and optical spectrum homogeneity. The uniform Au@pNIPAm microgel‐based devices show a fast response and exhibit a comparatively homogeneous spectrum over the whole slide. These materials can potentially find use in drug delivery systems, active optics, and soft robotics.  相似文献   

18.
The second‐order rate constants of thiolysis by n‐heptanethiol on 4‐nitro‐Nn‐butyl‐1,8‐naphthalimide (4NBN) are strongly affected by the water–methanol binary mixture composition reaching its maximum at around 50% mole fraction. In parallel solvent effects on 4NBN absorption molar extinction coefficient also shows a maximum at this composition region. From the spectroscopic study of reactant and product and the known H‐bond capacity of the mixture a rationalization that involves specific solvent H‐donor interaction with the nitro group is proposed to explain the kinetic data. Present findings also show a convenient methodology to obtain strongly fluorescent imides, valuable for peptide and analogs labeling as well as for thio‐naphthalimide derivatives preparations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A representative data set has been gained by the measurement of the electronic absorption spectra of 12 systematically selected push–pull systems with an intramolecular charge‐transfer (CT) absorption and the general structure D–π–A (D = donor, A = acceptor) featuring electron‐withdrawing CN groups, electron‐donating N(CH3)2 groups, and various π‐conjugated backbones in 32 solvents with different polarities. The longest‐wavelength absorption maxima λmax and the corresponding wavenumbers $\tilde {v}_{{\rm max}} $ were evaluated from the UV/Vis spectra measured in 32 well‐selected solvents. The D–π–A push–pull systems were further characterized by quantum‐chemical quantities and simple structural parameters. Structure–solvatochromism relationships were evaluated by multidimensional statistic methods. Whereas solvent polarizability and solvent cavity size proved to be the most important factors affecting the position of λmax, the solvent polarity was less important. The most important characteristics of organic CT compounds are the energy of the LUMO, the permanent dipole moment, the COSMO (COnductor‐like Screening MOdel) area, the COSMO volume, the number, and ratio of N,N‐dimethylamino and cyano groups, and eventually the number of triple bonds (π‐linkers). A relation between the first‐order polarizability α, the longest‐wavelength absorption maxima λmax, and the structural features has also been found. The higher‐order polarizabilities β and γ are not related to the observed solvatochromism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Extensive research and great progress of (K,Na)NbO3 (KNN)‐based lead‐free piezoelectric films have been driven by the current legislation and the requirement for sustainable development of society and environment in the applications of microelectromechanical systems. A comprehensive discussion of the recent achievement in KNN‐based films is presented herein. First, the available synthetic techniques, chemical modification, the ferroelectric and piezoelectric properties of KNN‐based films are reviewed, followed by an introduction of the crystal structures and electrical properties of KNN‐based epitaxial films in comparison with the bulk ceramics. Finally, the applications of KNN‐based films for the sensors, the energy harvesters, and energy storage devices are addressed, and current challenges and prospects for future work are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号