首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
4‐Stilbenecarboxaldehyde (4SCA) at pH 3 was added to TiO2 anatase to form a new catalyst where the aldehyde carbonyl group reacts with the TiO2‐OH to form the corresponding acetal (4SCA‐TiO2). 4SCA‐TiO2 significantly retards the electron recombination when it is illuminated with ultraviolet B light because of the formation of a stable radical anion·?4SCA‐TiO2 that we have detected spectroelectrochemically. The light excited electron on the catalysis is transferred relatively slow to solution. Therefore, the electron transfer to solution is the rate‐limiting step for water‐dissolved organic compound degradation when 4SCA‐TiO2 is used as photocatalyst. For instance, degradation rate constants using naphthalene (Naph) and p‐nitrophenol (PNP) in an ample pH range support the proposal. Accordingly, rate constants are faster when the standard redox potential of the involved electron acceptor in the solution increases. In fact, this condition can be tuned to promote reactivity. The affinity between the organics being degraded and 4SCA‐TiO2 also influences on the degradation rate constants.  相似文献   

2.
In this paper, anatase and rutile TiO2 nanoparticles as well as their mixed crystal phase structure TiO2 nanoparticles were synthesized by a sol‐hydrothermal method, and were served as active substrates for surface‐enhanced Raman scattering (SERS) study. The results show that the 4‐mercaptobenzoic acid probe molecules exhibit different degree SERS enhancements on the surface of different phase structure TiO2 nanoparticles. The mixed crystal structure TiO2 with an appropriate proportion of anatase and rutile phase is favourable to SERS enhancement of adsorbed molecules. These are mainly attributed to the contributions of the TiO2‐to‐molecule charge transfer mechanism and the mixed crystal effect. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
TiO2-coated sericite powders were prepared by the chemical deposition method starting from lamellar sericite and TiCl4 in the presence or absence of La3+ cations. After calcination at 900 °C for 1 h, the resultant TiO2 nanoparticles on the sericite surfaces existed in anatase phase. The light scattering indexes of the TiO2-coated lamellar sericite powders were dozens of times higher than that of the naked lamellar sericite powders. The presence of La3+ in the deposition solution was beneficial to the formation of the small-sized anatase TiO2 nanoparticles, resulting in the formation of the dense and uniform island-like TiO2 coating layers in a large range of the weight ratios of TiO2 to sericite from 5% to 20%. The TiO2-coated lamellar sericite powders prepared in the presence of La3+ had higher light scattering index than that prepared in the absence of La3+. XPS analysis shows that when La3+ cations were absent in the reaction solution, TiO2 coating layers anchored at the sericite surface via the Ti-O-Si and Ti-O-Al bonds. The presence of La3+ cations caused the formation of Si-O-La and Al-O-La bonds at the sericite surface and Ti-O-La bond at the surface of TiO2 coating layers. After coating TiO2 on the sericite surface, the yellowness of the TiO2-coated sericite powders obviously increased and the brightness slightly decreased.  相似文献   

4.
In this work, we demonstrate nano‐structured silver particles photo‐reduced from silver nitride (AgNO3) solution using visible‐light‐activated titanium dioxide (TiO2), which can be a convenient and effective substrate for surface enhanced Raman spectroscopy (SERS) observation. Visible‐light‐activated carbon‐containing TiO2 nanoparticles are applied to photo‐reduce and form nano‐structured silver from AgNO3 upon visible‐light illumination. Photo‐reduced nano‐structured silver is used as an active substrate for SERS studies of TiO2 as well as nano diamond and TiO2. The photo reduction of AgNO3 and SERS observation can be obtained by simultaneously using the same visible laser excitation. The coexistence of the anatase phase with small admixture of the rutile phase in the TiO2 can be observed using SERS. The carbon structure in the carbon‐containing TiO2 was determined to be sp2 type carbon bonding by SERS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Anatase nanocrystalline TiO2 thin films were obtained by a sol–gel dip‐coating method, in which the nanocrystallization is effected by a simple hot water treatment of the deposited films at temperatures below 90 °C under atmospheric pressure for 1 h. The dip‐coating sol was prepared by reacting titanium tetra‐n‐butoxide [Ti(OnBu)4] with polyethylene glycol (PEG) in ethanol. Films obtained from a sol that do not contain PEG show no sign of crystallization, demonstrating the importance of PEG in the crystallization process. Raman studies of reaction dynamics show that PEG undergoes a nucleophilic substitution reaction replacing butoxy groups in Ti(OnBu)4. Stoichiometric reactions of Ti(OnBu)4 with PEG in polar and nonpolar solvents were performed, and they yielded different titanium–PEG hybrid polymers, which were isolated and characterized by various spectroscopic techniques such as IR, Raman, solid‐state NMR and MALDI‐TOF‐MS. NMR studies evidenced the location and the way in which PEG is bonded with titanium atoms in the titanium–PEG hybrid polymers. On the basis of these studies, we have proposed structures for these polymers. It is demonstrated that the structure of the obtained polymers plays an important role in the formation of anatase TiO2 nanoparticles in hot water at temperatures below 90 °C under atmospheric pressure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this work we prepared TiO2 nano-powders and TiO2/Pt nano-composites via three synthesis methods (sol-precipitation, sonochemical method, hydrothermal method) starting with the same precursors and media. To evaluate and compare the physical properties of the prepared materials, X-ray diffraction analysis, BET measurements, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron microscopy (TEM, HRTEM, SAED) were applied. The results showed changes to the TiO2 phase composition and crystallinity, the specific surface area as well as the platinum’s particle shape and size, depending on the method of synthesis. To determine the photocatalytic efficiency of the prepared materials, the photocatalytic discoloration of the methylene blue solution was evaluated using UV–Vis spectroscopy. The important properties required for a high photocatalytic activity, related to the surface characteristics and the phase composition, were determined in terms of the synthesis method. It was concluded that the optimum characteristics were obtained when using the hydrothermal approach, where the TiO2 had two phases, i.e., – anatase and rutile, a Pt-phase in the form of nanoparticles and adsorbed Pt-molecular species, as well as the presence of available free surface hydroxyl groups. Such characteristics had a critical influence on the photocatalytic activity of the final material.  相似文献   

7.
In this paper, the adsorption of 4‐mercaptobenzoic acid (4‐MBA) on TiO2 nanoparticles was studied mostly by surface‐enhanced Raman spectroscopy (SERS) and UV‐vis spectroscopy, at different pH values as well as under different temperatures and concentrations. The results show that the 4‐MBA molecules are bonded to the TiO2 surface both through the sulfur atoms and COO groups at neutral or alkaline pH, but only through the sulfur atom at acidic pH. Furthermore, the 4‐MBA molecules possess high adsorptive stability on TiO2 at a comparatively high temperature (150 °C). Concentration‐dependent SERS experiments show that the saturation concentration for 4‐MBA adsorbed on TiO2 is about 10−3 M in natural case (pH = 6). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The effects of the concentration of hydrochloric acid and treatment time on the transformation of Li2TiO3 were studied in detail. The results demonstrate that lithium ions are easily removed from the (?133) and (?206) planes. In contrast, Li+ extraction requires a longer time for the (002) and (?131) planes. A mixture of the anatase and rutile phases, pure rutile, and pure anatase can be generated by treating Li2TiO3 with a suitable concentration of hydrochloric acid for an appropriate amount of time. The phase(s) that are present significantly affect the cyclic adsorption performance of a titanium lithium ion sieve and the dissolution of Ti. The transformation from H2TiO3 particles to TiO2 primarily occurs via the dissolution-recrystallization process. The electrophilic H+ and highly electronegative Cl? affect the Ti–O bond, resulting in the destruction of the Ti–O bond in TiO6 octahedrons, promoting the structural rearrangement of anatase to rutile TiO2.  相似文献   

9.
Single-crystalline TiO2 nanomaterials with controlled phase composition and morphology were synthesized by hydrothermal transformation of H-titanate nanotubes under different pH. Rutile rectangle nanorods with two four-side tapered tips were produced at pH of 0, whereas anatase nanoparticles with mainly of rhombic shape were obtained at pH from 2 to 7 and their average particle size increased with pH. The transformation mechanisms at different pH were discussed. The single-crystalline anatase nanoparticles obtained at pH of 2 had ca. 12 nm in average particle size, and the powder possessed as large as 112 m2/g specific surface areas; the conversion efficiency of the dye-sensitized solar cell based on the nanoparticles was increased by over 40% as compared with that of the cell based on P25.  相似文献   

10.
In this paper, data concerning the effect of pH on the morphology of Ag–TiO2 nanocomposite during photodeposition of Ag on TiO2 nanoparticles is reported. TiO2 nanoparticles prepared by sol–gel method were coated with Ag by photodeposition from an aqueous solution of AgNO3 at various pH levels ranging from 1 to 10 in a titania sol, under UV light. The as-prepared nanocomposite particles were characterized by UV–vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and N2 adsorption/desorption method at liquid nitrogen temperature (−196 °C) from Brunauer–Emmett–Teller (BET) measurements. It is shown that at a Ag loading of 1.25 wt.% on TiO2, a high-surface area nanocomposite morphology corresponding to an average of one Ag nanoparticle per titania nanoparticle was achieved. The diameter of the titania crystallites/particles were in the range of 10–20 nm while the size of Ag particles attached to the larger titania particles were 3 ± 1 nm as deduced from crystallite size by XRD and particle size by TEM. Ag recovery by photo harvesting from the solution was nearly 100%. TEM micrographs revealed that Ag-coated TiO2 nanoparticles showed a sharp increase in the degree of agglomeration for nanocomposites prepared at basic pH values, with a corresponding sharp decrease in BET surface area especially at pH > 9. The BET surface area of the Ag–TiO2 nanoparticles was nearly constant at around a value of 140 m2 g−1 at all pH from 1–8 with an anomalous maximum of 164 m2 g−1 when prepared from a sol at pH of 4, and a sharp decrease to 78 m2 g−1 at pH of 10.  相似文献   

11.
Under visible‐light irradiation, gold nanoparticles (Au NPs) supported by titania (TiO2) nanofibers show excellent activity and high selectivity for both reductive coupling of nitroaromatics to corresponding azobenzene or azoxylbenzene and selective oxidation of aromatic alcohols to corresponding aldehydes. The Au NPs act as active centers mainly due to their localized surface plasmon resonance (LSPR) effect. They can effectively couple the photonic energy and thermal energy to enhance reaction efficiency. Visible‐light irradiation has more influence on the reduction than on the oxidation, lowering the activation energy by 24.7 kJ mol?1 and increasing the conversion rate by 88% for the reductive coupling, compared to merely 8.7 kJ mol?1 and 46% for the oxidation. Furthermore, it is found that the conversion of nitroaromatics significantly depends on the particle size and specific surface area of supported Au NPs; and the catalyst on TiO2(B) support outperforms that on anatase phase with preferable ability to activate oxygen. In contrast, for the selective oxidation, the effect of surface area is less prominent and Au NPs on anatase exhibit higher photo‐catalytic activity than other TiO2 phases. The catalysts can be recovered efficiently because the Au NPs stably attach to TiO2 supports by forming a well‐matched coherent interface observed via high‐resolution TEM.  相似文献   

12.
We present a comprehensive analysis of the Raman spectra of pure and zirconium‐doped anatase TiO2 nanoparticles. To account for the wavenumber shifts of the Eg6) mode as a function of particle size (L) and dopant concentration (x), a modification of the standard phonon confinement model (PCM) is introduced, which takes into account the contribution of surface stress by means of the Laplace–Young equation. Together with X‐ray diffraction (XRD) and transmission electron microscopy data, our analysis shows that the surface stress contribution to the observed blue shift of the Raman wavenumber is of the same magnitude as the spatial phonon confinement effect. Annealing experiments show that Zr‐doped nanoparticles exhibit retarded grain growth and delayed anatase‐to‐rutile phase transition by up to 200 K compared to pure anatase TiO2. XRD shows that Zr doping leads to a unit cell expansion of the anatase structure. Applying the modified PCM to the x‐dependent variations of the Eg6) Raman mode, the mode‐Grüneisen parameter is found to increase abruptly at x > 0.07 with a concomitant mode softening. This coincides with the x range over which the Zr cations are reported to be displaced from their position in the tetrahedral lattice, and where Zr precipitation occurs upon annealing. The results have implications for the interpretation of Raman spectra of ionic metal oxide nanoparticles and how these are modified upon cation doping. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A fabrication of all-solid-state thin-film rechargeable lithium ion batteries by sol-gel method is expected to achieve both the simplification and cost reduction for fabrication process. TiO2 thin film electrode was prepared by PVP (polyvinylpyrrolidone) sol-gel method combined with spin-coating on Li1 + xAlxGe2 − x(PO4)3 (LAGP) solid electrolyte which has wide electrochemical window. The thin film was composed of anatase TiO2 that is the most active phase for Li insertion and extraction and contacted well with LAGP substrate. In the cyclic voltammogram, a redox couple was observed at 1.8 V vs. Li/Li+ assigned to Li insertion/extraction into/from anatase TiO2, indicating that the thin film worked as electrode for lithium battery. The charge and discharge test in various charge and discharge rates revealed that the discharge process (delithiation) is thought to be faster than charge process (lithiation). It is attested that the sol-gel process, which derives both simplification and cost reduction for fabrication process, can be applied to thin film battery using LAGP solid electrolyte.  相似文献   

14.
Ultrafine nitrogen-doped TiO2 nanoparticles with narrow particle size distribution, good dispersion, and high surface area were synthesized in the presence of urea and PEG-4000 via a hydrothermal procedure. TEM observation, N2 adsorption, XRD, UV-vis spectroscopy, the Raman spectroscopy and XPS analysis were conducted to characterize the synthesized TiO2 particles. The synthesized TiO2 particles were a mixture of 49.5% anatase and 50.5% rutile with a size of around 5 nm. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive Brilliant Blue KN-R under both UV and visible light. The synthesized TiO2 particles showed much higher photocatalytic activity than a commercial P25 TiO2 powder under both UV and visible light irradiations. The high performance is associated to N doping, the reduced particle size, good dispersion, high surface area, and a quantum size effect.  相似文献   

15.
Oxygen-vacant titanium dioxide (TiO2−x ) nanoparticles were synthesized using thermal plasma as a heating source at various applied plasma currents and He/Ar ratios. Samples with diverse characteristics were developed and the mercury removal effectiveness was subsequently evaluated. TiO2 nanoparticles possessing high purity and uniform particle sizes were successfully synthesized using metal titanium and O2 as precursors and Ar as plasma gas. TiO2−x in anatase phase with a particle size at 5–10 nm was formed at the He/Ar volume ratio of 25/75. Further increasing the He/Ar ratio elevated the plasma temperature, causing the tungsten to melt, vaporize from the cathode, and then dope into the formed TiO2 nanoparticles. The doped W appeared to inhibit the growth of nanoparticles and decrease the crystallinity of formed anatase. The effectiveness of oxygen-vacant sites on Hg0 removal under the visible light circumstance was confirmed. Hg0 removal by the TiO2−x nanoparticles was enhanced by increasing the O2 concentration. However, moisture reduced Hg0 capture, especially when light irradiation was applied. The reduction in Hg0 capture may be resulted from the competitive adsorption of H2O on the active sites of TiO2−x with Hg0 and transformed Hg2+.  相似文献   

16.
Bicrystal phase TiO2 nanotubes (NTS) containing monoclinic TiO2-B and anatase were prepared by the hydrothermal reaction of anatase nanoparticles with NaOH aqueous solution and a heat treatment. Their structure was characterized by XRD, TEM and Raman spectra. The results showed that the bicrystal phase TiO2 NTS were formed after calcining H2Ti4O9·H2O NTS at 573 K. The bicrystal phase TiO2 NTS exhibit significantly higher photocatalytic activity than the single phase anatase NTS and Dessuga P-25 nanoparticles in the degradation of Methyl Orange aqueous solution under ultraviolet light irradiation, which is attributed to the large surface and interface areas of the bicrystal phase TiO2 NTS.  相似文献   

17.
In this research, we have studied the doping behaviors of eight transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, adsorption spectra, anatase fraction, and photoreactivity of TiO2 nanoparticles. The pristine and ion-doped TiO2 nanoparticles of 15.91-25.47 nm were prepared using sol–gel method. Test metal ion concentrations ranged from 0.00002 to 0.2 at.%. The absorption spectra of the TiO2 nanoparticles were characterized using UV-Visible spectrometer. The wavelength of the absorption edge of TiO2 was estimated using the spectra derivative-tangent method. The photoreactivities of pristine and ion-doped TiO2 nanoparticles under UV irradiation were quantified by the decoloring rate of methyl orange. XRD patterns were recorded using a Rigaku D/MAX-2500 V diffractometer with Cu Kα radiation (50 kV and 250 mA), and particle size and anatase fraction were calculated. Results reveal that different ion doping exhibited complex effects on the studied characteristics of TiO2 nanoparticles. In general, red shift occurred to ion-doped TiO2 nanoparticles, but still with higher TiO2 photoreactivities when doped with Fe3+ and Ni2+ ions. Among the ions investigated, Ni-doped TiO2 nanoparticles have shown highest photoreactivity at the concentration of 0.002 at.%, about 1.9 times that of the pristine TiO2. Ion doping was shown to reduce the diameter and influence the fraction of anatase. Data also indicated that the combination of anatase diameter and ion radius might play an important role in the photoreactivity of TiO2 nanoparticles. This investigation contributes to the understanding of complex ion doping effects on TiO2 nanoparticles, and provides references for enhancing their environmental application.  相似文献   

18.
XANES (X‐ray absorption near‐edge structure) spectra of the Ti K‐edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20–900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre‐edge and post‐edge. After the AIIP, amplitudes damped due to Debye–Waller factor effects with temperature. Amplitudes in the pre‐edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre‐edge peaks in various titanium compounds over a wide temperature range.  相似文献   

19.

A novel, facile, catalyst-free, and low temperature process for the synthesis of discrete anatase TiO2 nanocrystals has been developed in the absence of stabilizing agent. The product was shown to be discrete anatase TiO2 nanocrystals with a mean diameter of 4.97 ± 0.9 nm and a specific surface area of 393 m2/g. By varying the water content and precursor concentration, the particle size could be tuned. Also, the resultant colloid solution was quite stable even in the absence of stabilizing agent because of the coverage of EG molecules on the particle surface. In addition, the anatase TiO2 nanocrystals obtained in this work had highly thermal stability even at temperatures up to 800 °C. Also, as compared to Degussa P25 TiO2 powders, they exhibited stronger absorption at 200–350 nm and higher transmittance in the visible light region. Thus, the new approach proposed in this work was practicable for the synthesis of anatase TiO2 nanocrystals, particularly for those requested to have highly thermal stability and UVC-cut capability.

  相似文献   

20.
In this work we have synthesized TiO2 nanoparticles, using either a sol–gel base catalysed process in the interior of CTAB reversed micelles (TiO2 CTAB sol), or the neutralization of a TiO2/H2SO4 solution in the interior of AOT reversed micelles. From the absorption and emission data of the TiO2 nanoparticles it is possible to conclude that in the sol–gel route there remains alkoxide groups in the structure, originating transitions lower than the energy gap of TiO2 semiconductor. These transitions disappear in the neutralization procedure, where the alkoxide groups are absent in the structure. We have assigned the observed indirect and direct optical transitions according to the anatase band structure. TiO2 Langmuir-Blodgett (LB) films were prepared either by direct deposition of titanium isopropoxide or by deposition of the TiO2 CTAB sol. These films showed photoluminescence, which was attributed to band-gap emission and to surface recombination of defect states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号