首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Well‐defined pH‐responsive glycopolypeptides were prepared by polymer‐analogous aqueous amide coupling of d ‐glucosamine to poly(α,l ‐glutamic acid) (PGA) using the coupling agent 4‐(4,6‐dimethoxy‐1,3,5‐triazin‐2‐yl)‐4‐methylmorpholinium chloride (DMT‐MM) without any organic solvents, additives, or buffers. Degrees of substitution (DS) up to 80% can be achieved, and the DS is adjustable by the molar ratio of DMT‐MM to PGA repeating units. Successful glycosylation of both low MW and high MW PGA was confirmed by 1H NMR and FTIR spectroscopy as well as by an enhanced solubility at low pH. CD spectroscopy revealed that glycosylated PGAs with a DS up to 0.63 are able to undergo a pH‐responsive and reversible helix‐coil transition. However, for polymers with higher DS no transition occurs. A comparison with PGAs functionalized with monoethanolamine showed that the low helicity at high DS is not a steric effect due to the bulky sugar moieties, but a solvation effect. Preliminary turbidimetric tests with the lectin Concanavalin A indicate a biological activity of these glycosylated polypeptides. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3925–3931  相似文献   

2.
We describe herein the synthesis and self‐assembly characteristics of a doubly responsive AB diblock copolymer comprised of N‐isopropylacrylamide (NIPAM) and 4‐vinylbenzoic acid (VBZ). The AB diblock copolymer was prepared via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization in DMF employing a trithiocarbonate‐based RAFT agent. PolyNIPAM was employed as the macroRAFT agent. The NIPAM homopolymerization was shown to possess all the characteristics of a controlled process, and the blocking with VBZ was judged, by size exclusion chromatography, to be essentially quantitative. The NIPAM‐VBZ block copolymer was subsequently demonstrated to be able to form normal and inverse micelles in the same aqueous solution by taking advantage of the stimuli responsive characteristics of both building blocks. Specifically, and as judged by NMR spectroscopy and dynamic light scattering, raising the temperature to 40 °C (above the lower critical solution temperature of the NIPAM block), while at pH 12 results in supramolecular self‐assembly to yield nanosized species that are composed of a hydrophobic NIPAM core stabilized by a hydrophilic VBZ corona. Conversely, lowering the solution pH to 2.0 at ambient temperature results in the formation of aggregates in which the VBZ block is now hydrophobic and in the core, stabilized by the hydrophilic NIPAM block. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5864–5871, 2007  相似文献   

3.
A facile and phosgene‐free synthetic route to poly(l ‐tryptophan) 2 by the polycondensation of N‐phenoxycarbonyl‐l ‐tryptophan 1 is described. The monomer 1 was synthesized via the carbamylation of tetrabutylammonium salt of L‐tryptophan with diphenyl carbonate. The polycondensation proceeded smoothly at 60 °C in N,N‐dimethylacetamide in the presence of amines (n‐butylamine, diethylamine, and triethylamine) along with the elimination of phenol and carbon dioxide. The structural analysis of the obtained 2 by Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry revealed that n‐butylamine or diethylamine was successfully incorporated into the chain end of the polypeptide. Furthermore, we have demonstrated the synthesis of a diblock copolymer by utilizing amine‐terminated poly(ethylene glycol) as a source of the polyether segment. The chain length of the polypeptide segment was controlled by varying feed ratio between 1 and the amino group of poly(ethylene glycol). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4565–4571  相似文献   

4.
Three types of PEGylated polyamidoamine (PAMAM) dendrons were synthesized through PEGylation of primary amines at the periphery of second, third, and fourth generation dendrons. Au(III) precursors and the synthesized PEGylated PAMAM dendrons were mixed at various pHs to evaluate the effect of pH on gold nanoparticle (Au NP) synthesis by monitoring the change in surface plasmon resonance. The Au NP synthesis reaction was controlled by pH through the balance between protonated and deprotonated tertiary amines and the reactivity of Au(III) precursors. By using PEGylated PAMAM dendrons with higher generation, the obtained Au NPs had narrow size distribution with small average size because of the limitation of intermolecular space among PEGylated PAMAM dendrons for the growth to Au NP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1391–1398, 2010  相似文献   

5.
A series of novel multi‐responsive disulfide cross‐linked polypeptide nanogels has been synthesized by a one‐step ring‐opening polymerization process. The pH‐responsive core of the prepared nanogels was based on poly(L‐histidine), the difunctional N‐carboxy anhydride of l ‐cystine (l ‐Cys‐NCA) was used as a reduction‐cleavable cross‐linking agent, while the outer hydrophilic corona was comprised of a poly(ethylene oxide) block. Extensive molecular characterization studies were conducted in order to confirm the formation of the desired polymeric nanostructures and also to prove their responsiveness to external stimuli within the physiological values of healthy and cancer tissues. Furthermore, the disruption of the disulfide‐bond linkages between the polymeric chains was achieved by the presence of the reductive tripeptide glutathione (GSH), leading to size variations that were monitored by dynamic light scattering (DLS) and size‐exclusion chromatography (SEC). “Stealth” properties of the formed nanostructures were examined by zeta potential measurements. The described nanogels are clearly promising candidates for drug delivery applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1278–1288  相似文献   

6.
Proton transfer polymerization through thiol‐epoxy “click” reaction between commercially available and hydrophilic di‐thiol and di‐epoxide monomers is carried out under ambient conditions to furnish water‐soluble polymers. The hydrophilicity of monomers permitted use of aqueous tetrahydrofuran as the reaction medium. A high polarity of this solvent system in turn allowed for using a mild catalyst such as triethylamine for a successful polymerization process. The overall simplicity of the system translated into a simple mixing of monomers and isolation of the reactive polymers in an effortless manner and on any scale required. The structure of the resulting polymers and the extent of di‐sulfide defects are studied with the help of 13C‐ and 1H‐NMR spectroscopy. Finally, reactivity of the synthesized polymers is examined through post‐polymerization modification reaction at the backbone sulfur atoms through oxidation reaction. The practicality, modularity, further functionalizability, and water solubility aspects of the described family of new poly(β‐hydroxythio‐ether)s is anticipated to accelerate investigations into their potential utility in bio‐relevant applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3381–3386  相似文献   

7.
Poly(o‐aminobenzyl alcohol) (POABA) was grafted with poly(ethylene oxide)s (PEOs) through the reaction of tosylated PEO with both the hydroxide and amine moieties of reduced POABA. Reduced POABA was prepared through the acid‐mediated polymerization of o‐aminobenzyl alcohol, followed by neutralization with an aqueous ammonium hydroxide solution and reduction with hydrazine. The grafted copolymers were very soluble in common polar solvents, such as chloroform, tetrahydrofuran, and dimethylformamide, and the copolymers with longer PEO side chains (number‐average molecular weight > 164) were even water‐soluble. The conductivities of the doped grafted copolymers decreased with increasing PEO side‐chain length because of the nonconducting PEO and its torsional effect on the POABA backbone. The conductivity of highly water‐soluble POABA‐g‐PEO‐350 was 0.689 × 10?3 S/cm, that is, in the semiconducting range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4756–4764, 2004  相似文献   

8.
A vinylphosphonate monomer, dimethyl vinylphosphonate (DMVP), has been polymerized by anionic initiators. Anionic polymerization of DMVP with tert‐butyllithium (t‐BuLi) in combination with a Lewis acid, tributylaluminum (n‐Bu3Al), in toluene proceeded smoothly to give an isotactic‐rich poly(dimethyl vinylphosphonate) (PDMVP) with relatively narrow molecular weight distribution. Although all the PDMVPs were soluble in water, the isotactic‐rich PDMVP was insoluble in acetone and in chloroform which are good solvents for an atactic PDMVP prepared by radical polymerization. The isotactic‐rich PDMVP showed higher thermal property than that of the atactic PDMVP. Moreover, we successfully prepared poly(vinylphosphonic acid) (PVPA) through the hydrolysis of the isotactic‐rich PDMVP, which formed a highly transparent, self‐standing film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1677–1682, 2010  相似文献   

9.
10.
We report a poly(ethylene glycol)‐poly(L ‐alanine)‐azobenzene‐poly(L ‐alanine)‐poly(ethylene glycol) (PEG‐PA‐Z‐PA‐PEG) as a temperature and light sensitive polymer. The poly(ethylene glycol)‐poly(L ‐alanine) diblock copolymers with a flexible‐rigid block structure were coupled by an azobenzene group that undergoes a reversible configurational change between “trans” and “cis” upon exposure to UV and vis light. The single azobenzene molecule embedded in the middle of a block copolymer with a flexible (shell)‐rigid (core) structure significantly affected molecular assembly, micelle size, polypeptide secondary structure, and sol‐to‐gel transition temperature of the polymer aqueous solution, depending on its exposure to UV or vis light. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Low concentrations of 4‐vinylphenylboronic acid (VPBA) were copolymerized with 2‐N‐morpholinoethyl methacrylate (MEMA) by nitroxide mediated polymerization using BlocBuilder? unimolecular initiator at 80 to 90 °C. The MEMA/VPBA copolymerizations were performed at initial feed compositions (fVPBA,0) of 0.05 to 0.10 VPBA, with fVPBA,0 = 0.10 using dimethylacetamide (DMAc) solvent being most effective, as seen by a linear increase in number average molecular weight, Mn, versus conversion and low dispersity, ? < 1.40. The copolymers were further chain‐extended with a second batch of VPBA, resulting in a block copolymer with monomodal molecular weight distribution and ? = 1.66. For MEMA/VPBA copolymers, increases in VPBA composition and polymer solution concentration resulted in decreases in the cloud point temperature (CPT, typically varied between 27.4–37.8 °C) and CPT increased from 31.2 to 33.8 °C to about 88 °C with decreases in pH from 7 to 4. Rheological tests with small angle light scattering (SALS) confirmed CPTs measured by UV‐Vis and DLS. These copolymers were targeted as models to combine possible glucose‐sensing boronic acid functionality the thermoresponsiveness provided by MEMA groups. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1560–1572  相似文献   

12.
The click reaction between azides and alkynes is been increasingly employed in the preparation of polymers. In this article, we describe the synthesis and click polyaddition reaction of a new A‐B‐type amide monomer—prepared from d ‐glucose as renewable resource—containing the alkyne and azide functions. Both Cu(I)‐catalyzed and metal‐free click polymerization methods were used to prepare glucose‐derived poly(amide triazole)s. The resulting polymers had weight‐average molecular weights in the 45,000–129,000 range and were characterized by GPC, IR, and NMR spectroscopies. Thermal and X‐ray diffraction studies revealed them to be amorphous. Their qualitative solubilities in various solvents and their water sorption have been studied. The poly(amide triazole)s having the alcohol functions protected as methyl ether were water‐soluble. The presence of the amide functions along the polymer chain made these polytriazoles degradable in the presence of sodium deuteroxide. The degradation was monitored by NMR analysis, and the degradation product was characterized by HRMS. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 629–638  相似文献   

13.
The photopolymerization of acrylamide (AA) initiated by the metallic complex tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)3+2] in the presence of aliphatic and aromatic amines as co‐initiators was investigated in aqueous solution. Aromatic amines, which are good quenchers of the emission of the metal‐to‐ligand‐charge‐transfer excited state of the complex, are more effective co‐initiators than those that do not quench the luminescence of Ru(bpy)3+2, such as aliphatic amines and aniline. Laser‐flash photolysis experiments show the presence of the reduced form of the complex, Ru(bpy)3+1, for all the amines investigated. For aliphatic amines, the yield of Ru(bpy)3+1 increases with temperature, and on the basis of these experiments, a metal‐centered excited state is proposed as the reactive intermediate in the reaction with these amines. The decay of the transient Ru(bpy)3+1 is faster in the presence of AA. This may be understood by an electron‐transfer process from Ru(bpy)3+1 to AA, regenerating Ru(bpy)3+2 and producing the radical anion of AA. It is proposed that this radical anion protonates in a fast process to give the neutral AA radical, initiating in this way the polymerization chain. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4265–4273, 2001  相似文献   

14.
A series of poly(L ‐lysine)s grafted with aliphatic polyesters, poly(L ‐lysine)‐graft‐poly(L ‐lactide) (PLy‐g‐PLLA) and poly(L ‐lysine)‐graft‐poly(?‐caprolactone) (PLy‐ g‐PCL), were synthesized through the Michael addition of poly(L ‐lysine) and maleimido‐terminated poly(L ‐lactide) or poly(?‐caprolactone). The graft density of the polyesters could be adjusted by the variation of the feed ratio of poly(L ‐lysine) to the maleimido‐terminated polyesters. IR spectra of PLy‐g‐PCL showed that the graft copolymers adopted an α‐helix conformation in the solid state. Differential scanning calorimetry measurements of the two kinds of graft copolymers indicated that the glass transition temperature of PLy‐g‐PLLA and the melting temperature of PLy‐g‐PCL increased with the increasing graft density of the polyesters on the backbone of poly(L ‐lysine). Circular dichroism analysis of PLy‐g‐PCL in water demonstrated that the graft copolymer existed in a random‐coil conformation at pH 6 and as an α‐helix at pH 9. In addition, PLy‐g‐PCL was found to form micelles to vesicles in an aqueous medium with the increasing graft density of poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1889–1898, 2007  相似文献   

15.
An oligoamide‐ended poly(ethylene glycol) (PEG) with a PEG weight‐average molecular weight of 5000 (PEG‐5000‐oligoamide), with 3,5‐bis‐[2‐(5‐acetylamino‐2‐isobutoxy‐benzoylamino)‐acetylamino]‐benzoyl as the oligoamide, was synthesized. PEG‐5000‐oligoamide aggregated in chloroform or toluene via hydrogen‐bonding interactions among the oligoamide strands as a core and PEG, which was soluble in the solvents, as a shell. When a chloroform solution of PEG‐5000‐oligoamide at a concentration of approximately 0.06 g/L was cast onto a silicon wafer or a mica plate, rapid solvent evaporation induced its self reassembly as nanofibers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1119–1128, 2005  相似文献   

16.
We report here a novel direct method for the syntheses of primary aminoalkyl methacrylamides that requires mild reagents and no protecting group chemistry. The reversible addition‐fragmentation chain transfer polymerization (RAFT) of the aminoalkyl methacrylamide revealed to be highly efficient with 4‐cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as initiator. Cationic amino‐based homopolymers of reasonably narrow polydispersities (Mw/Mn < 1.30) and predetermined molecular weights were obtained without recourse to any protecting group chemistry. A range of block and random copolymers were also synthesized via the RAFT process. The homopolymers and copolymers were characterized by aqueous conventional and triple detection gel permeation chromatography systems. Furthermore, the primary amine‐based methacrylamide monomers and polymers revealed to be highly stable both with the primary amino group in the protonated and deprotonated form. We have also demonstrated that stabilized gold nanoparticles can be generated with the RAFT‐synthesized amine‐based polymers via a photochemical process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4984–4996, 2008  相似文献   

17.
A copolymer of poly(vinyl naphthalene) grafted onto poly(vinyl alcohol) has been synthesized with nitroxide‐mediated controlled radical polymerization. By separating the processes of the generation of grafting sites and polymerization, we can avoid the formation of the homopolymer. Because of its architecture, the polymer is soluble in water, despite the high content of hydrophobic groups. The naphthalene chromophores tend to aggregate, forming hydrophobic microdomains in an aqueous solution. Those aggregates exist in a very constrained environment that leads to extraordinarily large redshifts of both the absorption and emission of the polymer. The polymer acts as an efficient photosensitizer in photoinduced electron transfer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2675–2683, 2006  相似文献   

18.
Poly(methacrylic acid) (PMA) and poly(2‐ethyl‐2‐oxazoline) (PEOZO) are a polyacid/polybase pair capable of forming reversible, pH‐responsive, hydrogen‐bonding complexes stabilized by hydrophobic effects in aqueous media. Linear PMA was modified with long‐chain (number‐average molecular weight: 10,000) PEOZO via statistical coupling reactions in organic media to prepare a series of PMA‐graft‐PEOZO copolymers. Potentiometric titrations revealed that the presence of tethered PEOZO markedly increases the pKa values for PMA‐g‐PEOZO copolymers as compared with simple PMA/PEOZO mixtures at degrees of ionization, α, between 0.0 and 0.1. The dilute‐solution PMA–PEOZO intramolecular association has been probed by monitoring the PEOZO NMR spin–spin (T2) relaxation as a function of pH. Covalently attached PEOZO side chains participate in complexation at higher values of α than untethered PEOZO. Surprisingly, most PEOZO side chains did not take part in hydrogen bonding at low α, and the highest level of PEOZO incorporation induced a decrease in the number of PMA/PEOZO hydrogen bonds. The polymer self‐diffusion as a function of α was measured with dynamic light scattering. At low pH, the copolymers had no charge and they were in a collapsed form. At high pH, the expected conformational expansion of the PMA units was enhanced at moderate levels of PEOZO incorporation. However, the highest PEOZO incorporation induced the onset of intramolecular associations between PEOZO units along the copolymer chains. Low shear rheometry and light scattering measurements were used in conjunction with the T2 NMR measurements to propose a model consistent with the aforementioned behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2520–2533, 2004  相似文献   

19.
Thermo‐responsive block copolymers based on poly(N‐vinylcaprolactam) (PNVCL) have been prepared by cobalt‐mediated radical polymerization (CMRP) for the first time. The homopolymerization of NVCL was controlled by bis(acetylacetonato)cobalt(II) and a molecular weight as high as 46,000 g/mol could be reached with a low polydispersity. The polymerization of NVCL was also initiated from a poly(vinyl acetate)‐Co(acac)2 (PVAc‐Co(acac)2) macroinitiator to yield well‐defined PVAc‐b‐PNVCL block copolymers with a low polydispersity (Mw/Mn = 1.1) up to high molecular weights (Mn = 87,000 g/mol), which constitutes a significant improvement over other techniques. The amphiphilic PVAc‐b‐PNVCL copolymers were hydrolyzed into unprecedented double hydrophilic poly(vinyl alcohol)‐b‐PNVCL (PVOH‐b‐PNVCL) copolymers and their temperature‐dependent solution behavior was studied by turbidimetry and dynamic light scattering. Finally, the so‐called cobalt‐mediated radical coupling (CMRC) reaction was implemented to PVAc‐b‐PNVCL‐Co(acac)2 precursors to yield novel PVAc‐b‐PNVCL‐b‐PVAc symmetrical triblock copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The amphiphilic poly(AM‐co‐SA)‐ITXH macrophotoinitiator was synthesized by precipitation photopolymerization under UV irradiation with isopropylthioxanthone (ITX) as free radical photoinitiator. A novel method has been developed to prepare amphiphilic core‐shell polymer nanospheres via photopolymerization of methyl methacrylate (MMA) in aqueous media, with amphiphilic copolymer macrophotoinitiator poly(AM‐co‐SA)‐ITXH. During polymerization, the amphiphilic macroradicals underwent in situ self‐assembly to form polymeric micelles, which promoted the emulsion polymerization of the monomer. Thus, amphiphilic core‐shell nanospheres ranging from 70 to 140 nm in diameter were produced in the absence of surfactant. The conversion of the monomer, number average molecular weights (Mn), and particle size were found to be highly dependent on the macrophotoinitiator and monomer concentration. The macrophotoinitiator and amphiphilic particles were characterized by FTIR, UV‐vis, 1H NMR, TEM, DSC, and contact angle measurements. The results showed the particles had well‐defined amphiphilic core‐shell structure. This new method is scientifically and technologically significant because it provides a commercially viable route to a wide variety of novel amphiphilic core‐shell nanospheres. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 936–942, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号