首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
This Letter reports on the assembly on the tip of an optical fibre of a metamaterial film fabricated by a self‐assembly bottom‐up method, composed of silver nanowires embedded in an alumina matrix. By illuminating the film through the fibre in a reflection configuration, we observe experimentally the optical response of the metamaterial in agreement with theoretical predictions and interpreted as the excitation of surface plasmon‐polaritons in the cylindrical surface of the nanowires. These results pave the way for low‐cost optical fibre devices that incorporate metamaterial films.

  相似文献   


2.
A high‐efficiency bulk heterojunction organic photovoltaic cell (OPV) was achieved by the electrospray deposition method. The surface roughness of the P3HT:PCBM thin film can be reduced using the mixed solvent consisting of o‐dichlorobenzene (o‐DCB) and acetone. The effect of acetone concentration is related to its dielectric constant. Under an optimized concentration of acetone in o‐DCB (20 vol%), the P3HT/PCBM active layer with a smooth surface can be formed, and the power conversion efficiency of the OPV was 1.9%.

  相似文献   


3.
We demonstrate the monolithic integration of a microstructured organic photodiode with a planar optical stripe waveguide. The manufacturing of this waveguide‐integrated organic photodiode is based on an UV photolithography process. The integration of photodiodes with optical waveguides represents an essential building block in the field of optoelectronic‐photonic integrated circuits.

  相似文献   


4.
Electric control of magnetism is demonstrated in a multiferroic metal–organic framework with a perovskite structure. A moderate electric field of a few kV/cm applied during the cooling process is able to cause a large (more than 50%) change of the magnetization at low temperature. This significant magnetoelectric effect is ascribed to the electric field manipulation of orientation of hydrogen bonds that modify the superexchange interaction between metal ions.

  相似文献   


5.
We report on solution‐processible polymer solar cells (PSCs) fabricated on a papery substrate using carton. Highly conductive PEDOT:PSS was used as a bottom anode and planarization layer, and a semi‐transparent top cathode was applied. This research could be an important approach to the development of all‐solution‐processible papery PSCs as well as paper electronics.

  相似文献   


6.
The Fe3O4(111)/graphene/Ni(111) trilayer is proposed to be used as an ideal spin‐filtering sandwich where the half‐metallic properties of magnetite are used. Thin magnetite layers on graphene/Ni(111) were prepared via successive oxidation of a thin iron layer predeposited on graphene/Ni(111) and the formed system was investigated by means of low‐energy electron diffraction and photoelectron spectroscopy. The electronic structure and structural quality of the graphene film sandwiched between two ferromagnetic layers remain unchanged upon magnetite formation as confirmed by experimental data.

  相似文献   


7.
Steady‐state and time‐resolved photoluminescence of silicon nanoparticles dispersed in low‐polar liquids at above room temperature is studied. The roles of low‐polar liquids as well as mechanisms responsible for their temperature‐dependent photoluminescence are discussed. The thermal sensitivity of the photoluminescence is estimated and application of the nanoparticles as nanothermometers is proposed.

  相似文献   


8.
In this Letter, we report on a new nanofabrication technology to yield highly arrayed nanoelectrodes for organic–inorganic solar cells that promise new levels of performance and efficiency. This technology efficiently controls the effective area of highly arrayed nanoelectrodes and allows for the maximum incorporation of organic materials within the voids. Particularly the 3D parameters such as thickness, spacing, and height of the nanostructures are controlled non‐lithographically by atomic layer deposition technology.

  相似文献   


9.
We report the fabrication procedure and the characterization of an Al0.3Ga0.7As solar cell containing high‐density GaAs strain‐free quantum dots grown by droplet epitaxy. The production of photocurrent when two sub‐bandgap energy photons are absorbed simultaneously is demonstrated. The high quality of the quantum dot/barrier pair, allowed by the high quality of nanostructured strain‐free materials, opens new opportunities for quantum dot based solar cells.

  相似文献   


10.
Osmium diboride has been known for some time as a low compressibility material and a superhard material. It is suitable for hard coating applications. It is also a superconductor below 2.1 K. Using first‐principles calculations, the author investigated the geometry of its Fermi surface (FS) and calculated the related physical quantities. The theoretical results are used to predict the frequencies of the Shubnikov–de Haas quantum oscillations. Comparison with recent measurements of the magneto‐resistance oscillations in osmium diboride is made.

  相似文献   


11.
By means of first‐principles calculations we predict the stability of silicene as buckled honeycomb lattice on passivated substrates of group‐IV(111)1 × 1 surfaces. The weak van‐der‐Waals interaction between silicene and substrates does not destroy its linear bands forming Dirac cones at the Brillouin zone corners. Only very small fundamental gaps are opened around the Fermi level.

  相似文献   


12.
A resonance splitting effect is investigated in a system composed of two cavities coupled by two unidirectional waveguides. Both theoretical analysis and numerical calculations demonstrate that the resonance splitting (indicating a coupling between the cavities) is independent of the phase shift between the cavities, which is in contrast to previous research where reciprocal waveguides are used. Moreover, this splitting can be tunable by an external magnetic field. Our findings offer a possibility to realize effective coupling between remote on‐chip resonators, which is highly demanded in the next‐generation photonic circuits.

  相似文献   


13.
Angle‐resolved photoemission spectroscopy (ARPES) and X‐ray photoemission spectroscopy have been used to characterise epitaxially ordered graphene grown on copper foil by low‐pressure chemical vapour deposition. A short vacuum anneal to 200 °C allows observation of ordered low energy electron diffraction patterns. High quality Dirac cones are measured in ARPES with the Dirac point at the Fermi level (undoped graphene). Annealing above 300 °C produces n‐type doping in the graphene with up to 350 meV shift in Fermi level, and opens a band gap of around 100 meV.

  相似文献   


14.
A facile metal catalyst free route to synthesize boron doped (0.6%–1.0%) carbon nanotubes via ceramic nanowires in which the formation of the nanowires (probably serving as templates), the carbon nanotubes and their doping all occur unanimously in the reaction, is presented.

  相似文献   


15.
In this Letter we demonstrate that hydrogen‐terminated porous silicon (PSi) layers and powders can serve as highly efficient reductive templates for noble metal salts. The reduction results in metal nanoparticle (NP) formation in the pores of PSi. Gold NP formation has been monitored in‐situ by measuring the plasmon resonance response. Pt NPs, formed in the PSi matrix, were investigated by transmission electron microscopy and energy‐dispersive X‐ray analysis. Furthermore, hybrid Pt/PSi nanocomposites exhibit a high catalytic activity for CO oxidation.

  相似文献   


16.
We demonstrated important changes produced on the modulation frequency of hybrid organic–inorganic light‐emitting diodes to examine the applicability as a light source for visible optical communications. The fabricated device structure was 4,4′‐bis[N ‐(1‐napthyl)‐N ‐phenyl‐amino]biphenyl/4,4′‐(bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl:4,4′‐bis[9‐dicarbazolyl]‐2,2′‐biphenyl/ZnS/LiF/MgAg. This device showed an improvement in the modulation frequency using ZnS instead of an organic material, tris(8‐hydroxyquinoline)aluminum. A maximum cutoff frequency of 20.6 MHz was achieved.

  相似文献   


17.
We propose a novel and complementary method for fabrication of flexible electronics. This method is not based on conventional printing using inks, but is based on the application of a toner‐based method such as Xerox or laser printing, followed by a lamination process. The lamination method is a solvent‐free and material‐saving process that simultaneously seals the devices, and the fabricated flexible devices have structural durability against bending. We have also shown that thermal lamination has an oriented growth effect, and the electrical characteristics of flexible organic field‐effect transistors did not degrade under a bending radius of 1 mm.

  相似文献   


18.
A new method for fabricating carbon nanotube‐conducting polymer (CNT‐CP) composite single nanowires is reported. The method developed is highly efficient, reliable, and economical because it obviates the time consuming process of template fabrication and the post‐synthesis task of positioning nanowires. Single nanowires with diameters of 50‐500 nm are fabricated between electrodes, self‐templated by dielectrophoresis and electropolymerization. Fabrication of an individually addressed nanowire array with cantilever electrodes on a microchip is demonstrated.

  相似文献   


19.
InGaN/GaN light‐emitting diodes (LEDs) are known to exhibit a strongly non‐uniform vertical carrier distribution within the multi‐quantum well (MQW) active region. We propose to eliminate “dark” quantum wells by insertion of multiple tunnel junctions into the MQW which allow for the repeated use of electrons and holes for photon generation. In good agreement with available measurements, we demonstrate by self‐consistent numerical simulation that such tunnel junction LED design promises quantum efficiencies as high as 250% as well as a strongly enhanced output power at high input power, compared to conventional LED concepts.

  相似文献   


20.
Metallic single‐walled carbon nanotubes (m‐SWCNTs) with excellent conductivity and transparency are considered to be eminent electrode materials. However, it still remains a challenge to separate m‐SWCNTs by their diameters. As reported in this Letter, by effective purification treatment of SWCNTs, we succeeded in achieving diameter separation of m‐SWCNTs using gel column chromatography. TEM and Raman characterizations revealed that metal catalysts and amorphous carbon on tube surfaces were largely reduced, which contributed to the diameter separation of m‐SWCNTs.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号