首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wood‐fiber–reinforced polyimide (PI) has been widely used in many engineering fields because of its high specific strength and stiffness. However, PI does not adhere well with wood fibers because it has a low free surface energy. In addition, high viscosity in the melted phase causes poor impregnation. In this study, surface treatment methods, ie, coupling agents with plasma treatment on wood fibers, were applied to increase the interfacial strength between the wood fibers and the PI matrix. The modified wood fiber surfaces were analyzed by X‐ray photoelectron spectroscopy and scanning electron microscopy. To analyze the effectiveness of the surface treatment method, the interlaminar shear strength (ILSS) was measured using the 3‐point bending test. From the test results, the ILSS of the specimens treated with the silane coupling agent after the plasma treatment increased by 48.7% compared with those of the untreated specimens.  相似文献   

2.
A simple and efficient chemical method was developed to graft directly carbon nanofibers (CNFs) onto carbon fiber (CF) surface to construct a CF‐CNF hierarchical reinforcing structure. The grafted CF reinforcements via covalent ester linkage at low temperature without any usage of dendrimer or catalyst was investigated by FTIR, X‐ray photoelectron spectroscopy, Raman, scanning electron microscopy, atomic force microscopy, dynamic contact angle analysis, and single fiber tensile testing. The results indicated that the CNFs with high density could effectively increase the polarity, wettability, and roughness of the CF surface. Simultaneous enhancements of the interfacial shear strength, flexural strength, and dynamic mechanical properties as well as the tensile strength of CFs were achieved, for an increase of 75.8%, 21.9%, 21.7%, and 0.5%, respectively. We believe the facile and effective method may provide a novel and promising interface design strategy for next‐generation advanced composite structures.  相似文献   

3.
The mechanical strength and modulus of chopped carbon fiber (CF)‐reinforced polybenzoxazine composites were investigated by changing the length of CFs. Tensile, compressive, and flexural properties were investigated. The void content was found to be higher for the short fiber composites. With increase in fiber length, tensile strength increased and optimized at around 17 mm fiber length whereas compressive strength exhibited a continuous diminution. The flexural strength too increased with fiber length and optimized at around 17 mm fiber length. The increase in strength of composites with fiber length is attributed to the enhancement in effective contact area of fibers with the matrix. The experimental results showed that there was about 350% increase in flexural strength and 470% increase in tensile strength of the composites with respect to the neat polybenzoxazine, while, compressive properties were adversely affected. The composites exhibited an optimum increase of about 800% in flexural modulus and 200% in tensile modulus. Enhancing the fiber length, leads to fiber entanglement in the composites, resulted in increased plastic deformation at higher strain. Multiple branch matrix shear, debonded fibers and voids were the failures visualized in the microscopic analyses. Defibrillation has been exhibited by all composites irrespective of fiber length. Fiber debonding and breaking were associated with short fibers whereas clustering and defibrillation were the major failure modes in long fiber composites. Increasing fiber loading improved the tensile and flexural properties until 50–60 wt% of fiber whereas the compressive property consistently decreased on fiber loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the effect of coupling agent surface treatment of wood fiber on tensile and tribological property of wood fiber‐reinforced thermoplastic polyimide (PI) composites was experimentally investigated. Experimental results revealed that coupling agent surface treatment could effectively improve the interfacial adhesion between wood fiber and PI matrix. Compared with the untreated wood fiber/PI composite, the coupling agent‐treated composite had better interfacial adhesion. The fracture surfaces and worn surface of samples were investigated by scanning electronic microscopy to analyze the effects of surface treatment methods.  相似文献   

5.
6.
A time‐dependent oxidation of carbon fibers in boiling nitric acid was used to investigate the influence of a modification of the fiber surface properties on the adhesion strength with an acrylate resin cured by electron beam (EB). For each time of treatment, a characterization of the surface topography and the surface chemistry was done (topography at a micrometric and nanometric scale, specific surface area, temperature programmed desorption, X‐ray photoelectron spectroscopy analysis). The oxidation of the fiber surface in boiling nitric acid created a rough surface, which significantly increased the specific surface area, and also generated a high density of hydroxyl groups, carboxylic acids and lactones in comparison to untreated fibers. The adhesion strength with the acrylate resin cured by EB was measured by a pull‐out test. For comparison, an isothermal ultraviolet curing of the matrix was also investigated. The value of the interfacial shear strength, determined by the Greszczuk's model, was increased by the oxidation of the carbon fiber surface for both curing processes, but lower values were systemically obtained with EB curing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Thermoplastic polyurethane (PU) elastomer, prepared from poly(tetramethylene glycol) and methyl diphenyl diisocyanate, was blended with boron nitride (BN) to fabricate a thermally conductive interface material. BN treated by a silane coupling agent (BN―NH2) and PU‐grafted BN were prepared to fabricate a composite that has better thermal conductivity and mechanical strength. The surface‐modified filler showed enhanced dispersibility and affinity because of the surface treatment with functional groups that affected the surface free energy, along with the structural similarity of the doped crystallized diisocyanate molecule with the matrix. The thermal conductivity increased from 0.349 to 0.467 W mk?1 on 20 wt% PU‐grafted BN loading that is a 1.34‐fold higher value than in the case of pristine BN loading at the same weight fraction. Moreover, the number of BN particles acting as defects, thereby reducing the mechanical strength, is decreased because of strong adhesion. We can conclude that these composite materials may be promising materials for a significant performance improvement in terms of both the thermal and mechanical properties of PU‐based polymers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Interfacial adhesion between the fiber and the matrix in a composite is a primary factor for stress transfer from the matrix to the fiber. In this study, oxygen plasma treatment method was applied to modify the fiber surface for improving interfacial adhesion of aramid fiber‐reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite. Composite interfacial adhesion properties were determined by interlaminar shear strength (ILSS) using a short‐beam bending test. The composite interfacial adhesion mechanism was discussed by SEM. The changes of chemical composition and wettability for plasma‐treated fiber surfaces stored in air as long as 10 days were investigated by XPS and dynamic contact angle analysis (DCAA), respectively. Results indicated that oxygen plasma treatment was an effective method for improving interfacial adhesion; plasma‐treated fiber surface suffered aging effects during storage in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Conductive polymer composites (CPC) containing nickel‐coated carbon fiber (NiCF) as filler were prepared using ultra‐high molecular weight polyethylene (UHMWPE) or its mixture with ethylene‐methyl methacrylate (EMMA) as matrix by gelation/crystallization from dilute solution. The electrical conductivity, its temperature dependence, and self‐heating properties of the CPC films were investigated as a function of NiCF content and composition of matrix in details. This article reported the first successful result for getting a good positive temperature coefficient (PTC) effect with 9–10 orders of magnitude of PTC intensity for UHMWPE filled with NiCF fillers where the pure UHMWPE was used as matrix. At the same time, it was found that the drastic increase of resistivity occurred in temperature range of 120–200 °C, especially in the range of 180–200 °C, for the specimens with matrix ratio of UHMWPE and EMMA (UHMWPE/EMMA) of 1/0 and 1/1 (NiCF = 10 vol %). The SEM observation revealed to the difference between the surfaces of NiCF heated at 180 and 200 °C. Researches on the self‐heating properties of the composites indicated a very high heat transfer for this kind of CPCs. For the 1/1 composite film with 10 vol % NiCF, surface temperature (Ts) reached 125 °C within 40 s under direct electric field where the supplied voltage was only 2 V corresponding to the supplied power as 0.9 W. When the supplied voltage was enough high to make Ts beyond the melting point of UHMWPE component, the Ts and its stability of CPC films were greatly influenced by the PTC effect. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1253–1266, 2009  相似文献   

10.
The effect of a two‐step free‐radical photopolymerization of an acrylate resin on the polymer properties in the presence of glass fibers is studied. It is found that a first irradiation leading to a partial conversion is effective for the fabrication of a preimpregnated glass‐fiber composite, which can be further processed and fully polymerized through a second irradiation. DMA analysis evidences the formation of a first relatively soft polymer embedding unreacted double bonds during the preirradiation. Further process allows the completion of the photopolymerization together with a reinforcement of the polymer network. This obviously affects the final mechanical properties of the photocomposite. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1440–1447  相似文献   

11.
A series of high‐performance polymer/carbon nanotube (CNT) composites with different nanotube contents have been prepared via condensation of N‐silylated diamino terminated precursor of the polymer with acid chloride‐functionalized CNTs and subsequent thermal cyclodehydration. The composites have been fully characterized by infrared and Raman spectroscopy, electron microscopy, and thermal analysis. Various interesting morphologic features including helical structures have been observed in the composites as a result of covalent attachment of the polymer. The composites exhibit excellent thermal stability and a significant improvement in the dielectric constant and mechanical strength with the inclusion of CNTs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Glass–fiber‐reinforced polymers were manufactured either through a room temperature thermal curing or under ultraviolet (UV) light from a LED. The thermal system yields high performances when a post‐curing process at 65°C is applied. The photochemical curing leads to a composite in a faster timescale, albeit at the extent of the mechanical properties. It is found that in this case, impregnation and vacuum steps are too fast to allow a good wetting of the fibers, thereby leading to mechanical weaknesses and larger void volume. However, when applying longer vacuum and impregnation steps, the mechanical properties of the photochemically cured sample match the best thermally cured one. As a conclusion, it is shown that photochemical curing of glass–fiber‐reinforced polymer can lead to high performance composite provided that the preparation steps are well controlled.  相似文献   

13.
The influence of the surface chemistry of the cellulose fiber and polymer matrix on the mechanical and thermal dynamic mechanical properties of cellulose‐fiber‐reinforced polymer composites was investigated. The cellulose fiber was treated either with a coupling agent or with a coupling‐agent treatment followed by the introduction of quaternary ammonium groups onto the fiber surface, whereas the polymer matrix, with opposite polar groups such as polystyrene incorporated with sulfonated polystyrene and poly(ethylene‐co‐methacrylic acid), was compounded with the fiber. The grafting of the fiber surface was investigated with Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. Experimental results showed that an obvious improvement in the mechanical strength could be achieved for composites with an ionic interface between the fiber and the polymer matrix because of the adhesion enhancement of the fiber and the matrix. The improved adhesion could be ascribed to the grafted ionic groups at the cellulose‐fiber surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2022–2032, 2003  相似文献   

14.
Polyacrylamideacrylate (PAN)‐based carbon fibers were submitted to nitric acid oxidation treatments to improve the interfacial adhesion of the carbon fiber (CF)‐reinforced polyimide (CF/PI) composite. The carbon fiber surfaces were characterized by X‐ray photoelectron spectroscopy (XPS). Nitric acid oxidation not only affects the oxygen concentration but also produces an appreciable change in the nature of the chemical functions, namely the conversion of hydroxy‐type oxygen into carboxyl functions. Nitric acid oxidation treatment modifies the element constituting the fiber, the nitrogen concentration being about 1.2 times higher at the fiber external surface compared to the untreated one. The mechanical and tribological properties of the polymide (PI) composites reinforced by the carbon fibers treated with nitric acid oxidation were investigated. Results showed that the tensile strength of the CF/PI composites improved remarkably due to nitric acid treatment along with enhancement in friction and wear performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The effect of air oxidation and ozone surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil‐lubricated condition was investigated. Experimental results revealed that ozone treated CF reinforced PTFE (CF–PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air‐oxidated composites. X‐ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after ozone treatment, oxygen concentration was obviously increased, and the amount of oxygen‐containing groups on CF surfaces was largely increased. The increase in the amount of oxygen‐containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with PTFE matrix and large scale rubbing‐off of PTFE was prevented, therefore, the tribological properties of the composite were improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In an exploratory effort to find a new way to make high‐performance composites used in ballistic protective applications, matrix‐free Spectra® fiber‐reinforced polymeric composites are produced via a novel processing method called high‐temperature high‐pressure sintering. Mechanical testing at ambient and elevated temperatures proves that the fibers can maintain their properties after processing. The characteristics and properties of the final products vary with different processing conditions. Their microstructure and morphology were investigated using SEM and WAXD. Their mechanical properties, including interlayer adhesion, rigidity, and ballistic performance, were measured and compared with those of the conventional composites. The sintering mechanism is proposed and verified. Spectra cloth is capable of being shaped to produce complex double curvatures by a thermoforming process, using a simple hemispherical mold. Success in different molding sequences and procedures shows the versatility in manufacturing. The theoretical background for the thermoformability is explained in terms of molecular interaction, microstructure, and morphology. Selective thermomechanical properties of the molded structures were measured. By combining the knowledge and information from the aforementioned studies, the process‐structure‐property relationship is established, which gives in‐depth and better understanding of this unique high‐temperature high‐pressure sintering process for consolidating Spectra cloth. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2767–2789, 2005  相似文献   

17.
Thermal conductive and antistatic polyetherimide (PEI) nanocomposites were fabricated by encapsulating non‐destructive amido group functionalized multi‐walled carbon nanotubes (MWCNTs) into the PEI matrix. Briefly, nearly half of acyl chloride groups in poly (acryloyl chloride) reacted with sodium azide and formed acyl azide groups, which could conjunct with MWCNTs via non‐destruction nitrenes addition reaction. The remaining acyl chloride groups in poly (acryloyl chloride) hydrolyzed into carboxyl groups, therefore COOH‐rich MWCNTs (MWCNTs@azide polyacrylic acid) were synthesized without serious damage to the MWCNTs. Then, MWCNTs@azide polyacrylic acid were then reacted with p‐Phenylene diamine (PPD) and transformed to amido group functionalized MWCNTs (MWCNTs@PPD). MWCNTs@PPD could participate into the in situ polymerization of PEI matrix, where the conjunction between bisphenol A dianhydride and amido groups on MWCNTs@PPD guaranteed the strong covalent bonding at the PEI/MWCNTs interface, which directly avoided the aggregation of MWCNTs. Owing to the non‐destructive modification of MWCNTs and tight matrix/filler interface, the volume electric and thermal conductivity of as‐prepared nanocomposites was up to 6.4 × 10?8 S/cm (1.0 wt%, MWCNTs@PPD) and 0.43 W/(m · K) (4.0 wt%, MWCNTs@PPD), respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the surface properties of polyacrylonitrile‐based carbon fibers is improved by electron‐beam (EB) irradiation in maleic anhydride/acetone solution at 100, 150, 200 and 150 KGy. Experimental study of this paper is carried out to identify surface topography, surface chemical composition and functional groups, adsorption ability and interface properties of CF/epoxy composites. The results reveal that the roughness of carbon fiber surface is increased obviously after modification by EB irradiation grafting technology. The ratio value of O/C and the relative content of oxygen functional groups on fiber surface are improved effectively, comparing with the unmodified carbon fiber. Besides, adsorption of carbon fiber on epoxy and the mechanical performance of CF/epoxy composites are clearly enhanced after irradiation grafting modification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this investigation was to study the effect of surface thermal oxidation of bamboo/poly(methyl methacrylate) composite by irradiation. Thermal oxidative effects on the surface energy of bamboo fiber were measured by radiation as a function of exposure time and temperature. Oxidized bamboo/poly(methyl methacrylate), after exposure to air at temperatures of 100°C and 110°C, had a range of maximum surface energies from 38 to 41 mJ/m2. Comparisons between Fourier transform infrared carbonyl peak growth and the surface energy showed that both methods detect oxidation, though the increase in surface energy was detected before the carbonyl peak growth was noticeable. The work of adhesion predicted by the surface free energies obtained in this work between a coated calcium carbonate and bamboo fiber changes by 10% due to the oxidation of the polymer at 110°C. The structural results were discussed in the oxidation chemistry of the macromolecule.  相似文献   

20.
High‐strength glass fabric (HSGF)/phenolic laminates modified with different contents of carbon nanotubes (CNTs) were fabricated by hot‐compression technique. The effects of CNTs on the interface of HSGF/phenolic, interlaminar shear strength (ILSS) and water‐lubricated tribological performance of HSGF/phenolic laminate were investigated. The ILSS of the laminates were tested on a universal testing machine (DY35), and the tribological properties were evaluated by a block‐on‐ring tribo‐tester. The interfaces of HSGF/phenolic and the worn surfaces of the laminates were analyzed by scanning electron microscope. The results showed that the moderate incorporation of CNTs improved the interface of HSGF/phenolic and accordingly enhanced the ILSS of the laminate. Besides, the friction coefficient of HSGF/phenolic laminate sliding against stainless steel in water can be remarkably stabilized and lowered by the incorporation of CNTs due to the better water lubrication induced by added CNTs and the intrinsic self‐lubrication of CNTs which were further graphitized during the friction and wear process. And the wear rate of the laminate can be accordingly reduced by 1 order of magnitude. The results indicate that CNTs have excellent potential in enhancing both ILSS and tribological fabric/polymer laminate composite, which will greatly improve the current situation of deterioration on mechanical properties by adding traditional solid lubricants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号