首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A series of activated urethane‐type derivatives of α‐amino acids were synthesized and applied to polypeptide synthesis. The urethane used herein, N‐(4‐nitrophenoxycarbonyl)‐α‐amino acids 1 , were synthesized by N‐carbamoylation of γ‐benzyl‐L ‐glutamate, β‐benzyl‐L ‐aspartate, L ‐leucine, L ‐phenylalanine, and L ‐proline, with 4‐nitrophenyl chloroformate. When 1 was dissolved in N,N‐dimethylacetamide (DMAc) and heated at 60 °C, it was smoothly converted into the corresponding polypeptides with releasing 4‐nitrophenol and carbon dioxide. Spectroscopic analyses of the obtained polypeptides revealed that they were comparable with the authentic polypeptides synthesized by the ring‐opening polymerizations of amino acid N‐carboxyanhydrides (NCAs). Besides the successful polycondensations of a series of 1 , their polycondensations of 1a and other 1 were also successfully carried out to obtain the corresponding statistic copolypeptides. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2525–2535, 2008  相似文献   

2.
Differing from the moisture‐sensitive α‐amino acid N‐carboxyanhydrides (AA‐NCAs) monomers, N‐phenoxycarbonyl α‐amino acids (AA‐NPCs) can be prepared and stored in open air. In this contribution, we report that the controlled polymerizations of AA‐NPC monomers of Otert‐butyl‐dl ‐serine (BRS‐NPC), Nε‐benzyloxycarbonyl‐l ‐lysine (ZLL‐NPC) and Nε‐trifluoroacetyl‐l ‐lysine (FLL‐NPC) initiated by amines are surprisingly able to tolerate common nucleophilic impurities such as water and alcohols at a level of monomer concentration. The structures of polypeptides synthesized in the presence of water or alcohols agree well with the designed ones in the case of repeated chain extensions. Detailed mechanism study and density functional theory calculation reveal that the low concentration of AA‐NCA and the high activity of amines are the key factors to the controllability of AA‐NPC polymerizations. The water‐ and alcohol‐tolerant property in polymerizations of AA‐NPCs encourages the following studies on unprotected (phenolic) hydroxyl groups containing AA‐NPCs. The controllable polymerizations of N‐phenoxycarbonyl l ‐tyrosine (LT‐NPC) and N‐phenoxycarbonyl S‐(3‐hydroxypropyl)‐l ‐cysteine (HLC‐NPC) initiated by amines are confirmed and reported for the first time, which extends the library of AA‐NPCs and polypeptides as well. All the universality of library, the convenience of monomer preparation, and the controllability and water‐ and alcohol‐tolerant property of polymerization of AA‐NPCs significantly enhance the feasibility of polypeptide synthesis, making AA‐NPC approach a promising synthetic method of polypeptides. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 907–916  相似文献   

3.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

4.
A facile and phosgene‐free synthetic route to poly(l ‐tryptophan) 2 by the polycondensation of N‐phenoxycarbonyl‐l ‐tryptophan 1 is described. The monomer 1 was synthesized via the carbamylation of tetrabutylammonium salt of L‐tryptophan with diphenyl carbonate. The polycondensation proceeded smoothly at 60 °C in N,N‐dimethylacetamide in the presence of amines (n‐butylamine, diethylamine, and triethylamine) along with the elimination of phenol and carbon dioxide. The structural analysis of the obtained 2 by Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry revealed that n‐butylamine or diethylamine was successfully incorporated into the chain end of the polypeptide. Furthermore, we have demonstrated the synthesis of a diblock copolymer by utilizing amine‐terminated poly(ethylene glycol) as a source of the polyether segment. The chain length of the polypeptide segment was controlled by varying feed ratio between 1 and the amino group of poly(ethylene glycol). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4565–4571  相似文献   

5.
A new convenient synthesis of N‐carboxyanhydrides (NCAs) of α‐amino acids was achieved by selective cyclization of urethane derivatives of α‐amino acids. The urethanes were readily synthesized via N‐carbamoylation of α‐amino acids by bis(4‐nitrophenyl)carbonate quantitatively. These urethanes having 4‐nitrophenoxy moiety were tolerant to air and moisture to allow their facile purification and storage. When the obtained urethanes were heated in 2‐butanone at 60 °C, they underwent the selective cyclization via intramolecular nucleophilic attack of the carboxyl moiety to the urethane moiety with releasing 4‐nitrophenol, leading to the successful formation of the corresponding NCAs. Addition of carboxylic acids remarkably stabilized the formed NCAs during the reaction, allowing their isolation in high yields. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3839–3844, 2009  相似文献   

6.
The NCAs of the following five amino acids were polymerized in bulk at 120 °C without addition of a catalyst or initiator: sarcosine (Sar), L ‐alanine (L ‐Ala), D ,L ‐phenylalanine (D ,L ‐Phe), D ,L ‐leucine (D ,L ‐Leu) and D ,L ‐valine (D,L ‐Val). The virgin reaction products were characterized by viscosity measurements 13C NMR spectroscopy and MALDI‐TOF mass spectrometry. In addition to numerous low molar mass byproducts cyclic polypeptides were formed as the main reaction products in the mass range above 800 Da. Two types of cyclic oligo‐ and polypeptides were detected in all cases with exception of sarcosine NCA, which only yielded one class of cyclic polypeptides. The efficient formation of cyclic oligo‐ and polypeptides explains why high molar mass polymers cannot be obtained by thermal polymerizations of α‐amino acid NCAs. Various polymerization mechanisms were discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4012–4020, 2008  相似文献   

7.
The colorimetric detection of anionic species has been studied for α‐amino acid‐conjugated poly(phenylacetylene)s, which were prepared by the polymerization of the ethyl esters of N‐(4‐ethynylphenylsulfonyl)‐L ‐alanine, L ‐isoleucine, L ‐valine, L ‐phenylalanine, L ‐aspartic acid, and L ‐glutamic acid using Rh+(2,5‐norbornadiene)[(η6‐C6H5)B?(C6H5)3] as the catalyst in CHCl3. The one‐handed helical conformations of all the sulfonamide‐functionalized polymers were characterized by Cotton effects in the circular dichroism spectra. The addition of anions with a relatively high basicity, such as tetra‐n‐butylammonium acetate and fluoride, induced drastic changes in both the optical and chiroptical properties. On the other hand, anions with a relatively low basicity, such as tetra‐n‐butylammonium nitrate, azide, and bromide, had essentially no effects on the helical conformation of all the sulfonamide‐functionalized polymers. The anion signaling property of the sulfonamide‐functionalized polymers possessing α‐amino acid moieties was significantly affected by the installed residual amino acid structures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1683–1689, 2010  相似文献   

8.
The synthesis of arborescent polymers with poly(γ‐benzyl L‐glutamate) (PBG) side chains was achieved through successive grafting reactions. The linear PBG building blocks were produced by the ring‐opening polymerization of γ‐benzyl L‐glutamic acid N‐carboxyanhydride initiated with n‐hexylamine. The polymerization conditions were optimized to minimize the loss of amino chain termini in the reaction. Acidolysis of a fraction of the benzyl groups on a linear PBG substrate and coupling with linear PBG using a carbodiimide/hydroxybenzotriazole promoter system yielded a comb‐branched or generation zero (G0) arborescent PBG. Further partial deprotection and grafting cycles led to arborescent PBG of generations G1 to G3. The solvent used in the coupling reaction had a dramatic influence on the yield of graft polymers of generations G1 and above, dimethylsulfoxide being preferable to N,N‐dimethylformamide. This grafting onto scheme yielded well‐defined (Mw/Mn ≤ 1.06), high molecular weight arborescent PBG in a few reaction cycles, with number‐average molecular weights and branching functionalities reaching over 106 and 290, respectively, for the G3 polymer. α‐Helix to coiled conformation transitions were observed from N,N‐dimethylformamide to dimethyl sulfoxide solutions, even for the highly branched polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5270–5279  相似文献   

9.
It is demonstrated here that three different α‐amino N‐carboxyanhydrides (NCAs), including for the first time O‐benzyl‐L ‐threonine NCA, can be polymerized in a controlled/“living” fashion without the need for transition metal catalysts or complex custom‐made glassware. Homopolymerizations in tetrahydrofuran gave monomodal distributions, high conversions, predictable Mn values and displayed first‐order kinetics. Chain extension experiments from poly(benzyl‐L ‐threonine), using N,N‐dimethylacetamide to avoid the formation of insoluble β‐sheets, was used to create a range of block copolypeptides of controlled structure. Monomodal molecular weight distributions are observed throughout and molecular weights agree well with predicted values, although polydispersities are generally higher than those observed using more experimentally challenging techniques. This method therefore represents a practical approach to the synthesis of well‐defined polypeptides without the requirement for specialized glassware or glove‐box techniques. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2882–2891, 2009  相似文献   

10.
In this work, rare earth tris(borohydride) complexes, Ln(BH4)3(THF)3 (Ln = Sc, Y, La, and Dy), have been used to catalyze the ring‐opening polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG NCA). All the catalysts show high activities and the resulting poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) are recovered with high yields (≥90%). The molecular weights (MWs) of PBLG can be controlled by the molar ratios of monomer to catalyst, and the MW distributions (MWDs) are relatively narrow (as low as 1.16) depending on the rare earth metals and reaction temperatures. Block copolypeptides can be easily synthesized by the sequential addition of two monomers. The obtained P(γ‐benzyl‐L ‐glutamate‐b‐ε‐carbobenzoxy‐L ‐lysine) [P(BLG‐b‐BLL)] and P(γ‐benzyl‐L ‐glutamate‐b‐alanine) [P(BLG‐b‐ALA)] have been well characterized by NMR, gel permeation chromatography, and differential scanning calorimetry measurements. A random copolymer P(BLG‐co‐BLL) with a narrow MWD of 1.07 has also been synthesized. The polymerization mechanisms have been investigated in detail. The results show that both nucleophilic attack at the 5‐CO of NCA and deprotonation of 3‐NH of NCA in the initiation process take place simultaneously, resulting in two active centers, that is, an yttrium ALA carbamate derivative [H2BOCH2(CH)NHC(O)OLn? ] and a N‐yttriumlated ALA NCA. Propagation then proceeds on these centers via both normal monomer insertion and polycondensation. After termination, two kinds of telechelic polypeptide chains, that is, α‐hydroxyl‐ω‐aminotelechelic chains and α‐carboxylic‐ω‐aminotelechelic ones, are formed as characterized by MALDI‐TOF MS, 1H NMR, 13C NMR, 1H–1H COSY, and 1H–13C HMQC measurements. By decreasing the reaction temperature, the normal monomer insertion pathway can be exclusively selected, forming an unprecedented α‐hydroxyl‐ω‐aminotelechelic polypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

12.
The purpose of this research was to synthesize new regular poly(ester amide)s (PEAs) consisting of nontoxic building blocks like hydrophobic α‐amino acids, α,ω‐diols, and aliphatic dicarboxylic acids, and to examine the effects of the structure of these building block components on some physico‐chemical and biochemical properties of the polymers. PEAs were prepared by solution polycondensation of di‐p‐toluenesulfonic acid salts of bis‐(α‐amino acid) α,ω‐alkylene diesters and di‐p‐nitrophenyl esters of diacids. Optimal conditions of this reaction have been studied. High molecular weight PEAs (Mw = 24,000–167,000) with narrow polydispersity (Mw/Mn = 1.20–1.81) were prepared under the optimal reaction conditions and exhibited excellent film‐forming properties. PEAs obtained are mostly amorphous materials with Tg from 11 to 59°C. α‐Chymotrypsin catalyzed in vitro hydrolysis of these new PEA substrates was studied to assess the effect of the building blocks of these new polymers on their biodegradation properties. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 391–407, 1999  相似文献   

13.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

14.
Poly‐(L ‐lysine citramide) is a degradable drug carrier of the polyelectrolyte type that is composed of citric acid and L ‐lysine building blocks. In a previous work, poly‐(L ‐lysine citramide) was synthesized by the interfacial polycondensation of α‐hydroxy acid protected citryl dichloride with COOH‐protected lysine diamine. Because of head‐to‐head and head‐to‐tail and tail‐to‐tail linkages in the chains as well as various side reactions such as deprotection of the α‐hydroxy acid moieties and intramolecular imide ring formation, a very large family of degradable polyelectrolyte copolymers was obtained. All the members of this family hydrolytically degrade to the same end products. In this study, another route was explored based on the polycondensation of α‐hydroxy acid protected citric acid pentafluorophenyl diesters, namely, citrobenzal dipentafluorophenyl and citrochloral dipentafluorophenyl with NN′‐trimethylsilylated COOH‐protected L ‐lysine. The resulting polymers were characterized by IR, NMR, and size exclusion chromatographic analyses. The resulting chain structures and repeat units were identified from these characterizations and are discussed as compared with characteristics exhibited by analogous polymers resulting from interfacial polycondensation. Differences observed at the intermediate stage involving protected polymers were largely erased during the final deprotection stage because of imide formation during final hydrolysis under the selected conditions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3475–3484, 2001  相似文献   

15.
The crystal structure of N‐(l ‐2‐amino­butyryl)‐l ‐alanine, C7H14N2O3, is closely related to the structure of l ‐alanyl‐l ‐alanine, both being tetragonal, while the retro‐analogue 2‐(l ‐alanyl­amino)‐l ‐butyric acid 0.33‐hydrate, C7H14N2O3·­0.33H2O, forms a new type of molecular columnar structure with three peptide mol­ecules in the asymmetric unit.  相似文献   

16.
A controlled metal‐free synthetic methodology toward well‐defined thermoresponsive polypeptides by decreasing the reaction temperature to 0 °C has been developed. Good control over the molecular weight in the polymerization of a trithiocarbonate‐functionalized N‐carboxyanhydride (MES‐l ‐Glu‐NCA) monomer was obtained using n‐hexylamine as the initiator at 0 °C. It yielded homopolypeptide macro‐transfer agent (PMESLG) with narrow molecular weight distribution (PDI < 1.3) and controllable chain length. Detailed 1H NMR and MALDI‐TOF‐MS analysis clearly confirmed that frequently occurring side‐reactions was absent at 0 °C, and the polymerization was controlled. The resultant PMESLG was applied to mediate the reversible addition‐fragmentation chain transfer (RAFT) polymerization of oligo‐ethylene‐glycol acrylate (OEGA) for the metal‐free synthesis of thermoresponsive polypeptides. These thermoresponsive polypeptides have well‐controlled molecular weight, adopted regular α‐helical conformation, and exhibited a lower critical solution temperature between 23 °C and 55 °C. To the best of our knowledge, there are very few reports about the synthesis of well‐defined thermoresponsive graft polypeptides via NCA polymerization and RAFT. Consequently, this provides a new strategy for the synthesis of promising intelligent material for future biomedical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2618–2624  相似文献   

17.
Some new and optically active 1,2,4‐triazolo thiadiazoles bearing N‐phthaloyl‐l ‐amino acids were synthesized by reaction of 4‐amino‐5‐(3‐ or 4‐)pyridyl‐3‐mercapto‐(4H)‐1,2,4‐triazoles with N‐phthaloyl‐l ‐amino acids in the presence of phosphorus oxychloride. All the newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR and elemental analysis.  相似文献   

18.
Five rare earth complexes are first introduced to catalyze ring opening polymerizations (ROPs) of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG NCA) and L ‐alanine NCA (ALA NCA) including rare earth isopropoxide (RE(OiPr)3), rare earth tris(2,6‐di‐tert‐butyl‐4‐methylphenolate) (RE(OAr)3), rare earth tris(borohydride) (RE(BH4)3(THF)3), rare earth tris[bis(trimethylsilyl)amide] (RE(NTMS)3), and rare earth trifluoromethanesulfonate. The first four catalysts exhibit high activities in ROPs producing polypeptides with quantitative yields (>90%) and moderate molecular weight (MW) distributions ranging from 1.2 to 1.6. In RE(BH4)3(THF)3 and RE(NTMS)3 catalytic systems, MWs of the produced polypeptides can be controlled by feeding ratios of monomer to catalyst, which is in contrast to the systems of RE(OiPr)3 and RE(OAr)3 with little controllability over the MWs. End groups of the polypeptides are analyzed by MALDI‐TOF MS and polymerization mechanisms are proposed accordingly. With ligands of significant steric hindrance in RE(OiPr)3 and RE(OAr)3, deprotonation of 3‐NH of NCA is the only initiation mode producing a N‐rare earth metallated NCA ( i ) responsible for further chain growth, resulting in α‐carboxylic‐ω‐aminotelechelic polypeptides after termination. In the case of RE(BH4)3(THF)3 with small ligands, another initiation mode at 5‐CO position of NCA takes place simultaneously, resulting in α‐hydroxyl‐ω‐aminotelechelic polypeptides. In RE(NTMS)3 system, the protonated ligand hexamethyldisilazane (HMDS) initiates the polymerization and produces α‐amide‐ω‐aminotelechelic polypeptides. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Melt polycondensation approach is developed for new classes of reduction responsive disulfide containing functional polyesters based on l ‐cystine amino acid resources under solvent free process. l ‐Cystine was converted into multi‐functional ester‐urethane monomer and subjected to thermoselective transesterification at 120 °C with commercial diols in the presence of Ti(OBu)4 to produce polyesters with urethane side chains. The polymers were produced in moderate to high molecular weights and the polymers were found to be thermally stable up to 250 °C. The β‐sheet hydrogen bonding interaction among the side chain urethane unit facilitated the self‐assembly of the polyester into amyloid‐like fibrils. The deprotection of urethane unit into amine functionality modified the polymers into water soluble cationic polyester spherical nanoparticles. The reduction degradation of disulfide bond was studied using DTT as a reducing agent and the high molecular weight polymers chains were found be chopped into low molecular weight oligomers. The cytotoxicity of cationic disulfide nanoparticle was studied in MCF‐7 cells and they were found to be biocompatible and non‐toxic to cells upto 50 μg/mL. The custom designed reduction degradable and highly biocompatible disulfide polyesters from l ‐cystine are useful for futuristic biomedical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2864–2875  相似文献   

20.
A series of novel copolymers of trans‐4‐hydroxy‐L ‐proline (Hpr) and α‐ hydroxy acids [D,L ‐mandelic acid (DLMA) and D,L ‐lactic acid (DLLA)] were synthesized via direct melt copolymerization with stannous octoate as a catalyst. These new copolymers had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the synthesis of the copolymers were obtained with 4 wt % stannous octoate at 140 °C under vacuum for 16 h. The synthesized copolymers were characterized by IR spectrophotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometry. The effects of the kinds of comonomers and the comonomer molar ratio on the polycondensation and glass‐transition temperature (Tg) were investigated. The Tg's of the copolymers shifted to lower temperatures with an increasing comonomer molar ratio. As expected, the Tg's of the NZ‐Hpr/DLMA copolymers were higher than the NZ‐Hpr/DLLA copolymers, the pendant groups on the monomers (NZ‐Hpr) became larger and more flexible, and the Tg's of the resulting polymers declined. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 724–731, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号