首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six alternating conjugated copolymers ( PL1 – PL6 ) of benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thiophene, containing electron‐withdrawing oxadiazole (OXD), ester, or alkyl as side chains, were synthesized by Stille coupling reaction. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. The introduction of conjugated electron‐withdrawing OXD or formate ester side chain benefits to decrease the bandgaps of the polymers and improve the photovoltaic performance due to the low steric hindrance of BDT. Bulk heterojunction polymer solar cells (PSCs) were fabricated based on the blend of the as‐synthesized polymers and the fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) in a 1:2 weight ratio. The maximum power conversion efficiency of 2.06% was obtained for PL5 ‐based PSC under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Recently, we have used terthiophene side chain to modify benzo[1,2‐b:4,5‐b′]dithiophene (BDT) to form novel building block for BDT polymers. In this paper, this building block is used to copolymerized with thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) and thieno[3,4‐b]thiophene (TT). This building block and TPD‐ or TT‐based polymers (P1 and P3) show high open circuit voltage (VOC) (ca. 0.9–0.95 V) and low energy loss (Eg–eVOC) in solar cells devices compared with similar polymers without bulky side chain. We further introduce thiophene π bridge into these polymers backbone to form two other polymers (P2 and P4). We find this thiophene π bridge does contribute to this bulky side chained benzodithiophene polymer photovoltaic performances, especially for power conversion efficiencies (PCEs). The polymer solar cells (PSCs) performances are moderate in this article due to the serious aggregation in the PSCs active layer. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1615–1622  相似文献   

3.
New donor–acceptor conjugated copolymers based on alkylthienylbenzodithiophene (BDTT) and alkoxynaphthodithiophene (NDT) have been synthesized and compared with their benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based analogues to investigate the effect of the extended π conjugation of the polymer main chain on the physicochemical properties of the polymers. A systematic investigation into the optical properties, energy levels, field‐effect transistor characteristics, and photovoltaic characteristics of these polymers was conducted. Both polymers demonstrated enhanced photovoltaic performance and increased hole mobility compared with the BDT‐based analogue. However, the BDTT‐based polymer (with π‐conjugation extension perpendicular to main chain) gave the highest power conversion efficiency of 5.07 % for the single‐junction polymer solar cell, whereas the NDT‐based polymer (with π‐conjugation extension along the main chain) achieved the highest hole mobility of approximately 0.1 cm2 V?1 s?1 based on the field‐effect transistor; this indicated that extending the π conjugation in different orientations would have a significant influence on the properties of the resulting polymers.  相似文献   

4.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

5.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A series of alternating copolymers of electron‐rich arylamine and electron‐deficient 2,1,3‐benzothiadiazole (BT), PV‐BT, DP‐BT, and TP‐BT, were synthesized by Heck coupling reaction. UV–vis absorption and fluorescence spectra show that the copolymerization of electron‐rich diphenylamine (DP), triphenylamine (TP), MEH‐PV (PV), and electron‐deficient BT results in low‐bandgap conjugated polymers. Within the three copolymers of PV‐BT, DP‐BT, and TP‐BT, TP‐BT possesses the highest hole mobility of 4.68 × 10? 5 cm2/V, as determined from the space charge limited current (SCLC) model. The bulk heterojunction‐typed polymer solar cells (PSCs) were fabricated with the blend of the copolymers and PCBM as the photosensitive layer. The power conversion efficiencies (PCE) of the PSCs based on PV‐BT, DP‐BT, and TP‐BT reached 0.26%, 0.39%, and 0.52%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The results indicate that TP‐BT is a promising photovoltaic polymer for PSCs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3861–3871, 2007  相似文献   

7.
A set of three donor‐acceptor conjugated (D‐A) copolymers were designed and synthesized via Stille cross‐coupling reactions with the aim of modulating the optical and electronic properties of a newly emerged naphtho[1,2‐b:5,6‐b′]dithiophene donor unit for polymer solar cell (PSCs) applications. The PTNDTT‐BT , PTNDTT‐BTz , and PTNDTT‐DPP polymers incorporated naphtho[1,2‐b:5,6‐b′]dithiophene ( NDT ) as the donor and 2,2′‐bithiazole ( BTz ), benzo[1,2,5]thiadiazole ( BT ), and pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione ( DPP ), as the acceptor units. A number of experimental techniques such as differential scanning calorimetry, thermogravimetry, UV–vis absorption spectroscopy, cyclic voltammetry, X‐ray diffraction, and atomic force microscopy were used to determine the thermal, optical, electrochemical, and morphological properties of the copolymers. By introducing acceptors of varying electron withdrawing strengths, the optical band gaps of these copolymers were effectively tuned between 1.58 and 1.9 eV and their HOMO and LUMO energy levels were varied between ?5.14 to ?5.26 eV and ?3.13 to ?3.5 eV, respectively. The spin‐coated polymer thin film exhibited p‐channel field‐effect transistor properties with hole mobilities of 2.73 × 10?3 to 7.9 × 10?5 cm2 V?1 s?1. Initial bulk‐heterojunction PSCs fabricated using the copolymers as electron donor materials and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as the acceptor resulted in power conversion efficiencies in the range of 0.67–1.67%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2948–2958  相似文献   

8.
A series of new low‐band gap copolymers based on dioctyloxybenzo[1,2‐b;3,4‐b′] dithiophene and bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline monomers have been synthesized via a Stille reaction. The effect of different functional groups attached to bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline was investigated and compared with their optical, electrochemical, hole mobility, and photovoltaic properties. Polymer solar cell (PSC) devices of the copolymers were fabricated with a configuration of ITO/ PEDOT: PSS/copolymers: PCBM (1:4 wt ratio)/Ca/Al. The best performance of the PSC device was obtained by using PbttpmobQ as the active layer. A power conversion efficiency of 1.42% with an open‐circuit voltage of 0.8 V, a short‐circuit current (JSC) of 5.73 mA cm−2, and a fill factor of 30.9% was achieved under the illumination of AM 1.5, 100 mW cm−2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
In this report, four donor–acceptor copolymers, P(NDT3‐BT), P(NDT3‐BO), P(NDF3‐BT), and P(NDF3‐BO), using 5,10‐didodecyl‐naphtho[1,2‐b:5,6‐b′]dithiophene (NDT3) or 5,10‐didodecyl‐naphtho[1,2‐b:5,6‐b′]difuran (NDF3) as an electron‐rich unit and benzodiathiazole (BT) or benzoxadiazole (BO) as an electron‐deficient one, were designed, synthesized, and characterized. Detailed systematical investigation was developed for studying the effect of the S/O atoms on the optical, electrochemical, and morphological properties of the polymers, as well as the subsequent performance of the organic field‐effect transistors (OFETs) fabricated from these copolymers. It was found that, compared with NDF3‐based P(NDF3‐BT)/P(NDF3‐BO), by replacing NDF3 with stronger aromatic NDT3, the resultant P(NDT3‐BT)/P(NDT3‐BO) show smaller lamellar distance with an increased surface roughness in solid state, and relatively higher hole mobilities are obtained. The hole mobilities of the four polymers based on OFETs varied from 0.20 to 0.32 cm2 V?1 s?1 depending on their molecular structures, giving some valuable insights for the further design and development of a new generation of semiconducting materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2465–2476  相似文献   

10.
Two donor/acceptor (D/A)‐based benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,3‐biphenyl quinoxaline copolymers of P 1 and P 2 were synthesized pending different functional groups (thiophene or triphenylamine) in the 4‐positions of phenyl rings. Their thermal, photophysical, electrochemical, and photovoltaic properties, as well as morphology of their blending films were investigated. The poly(4,8‐bis((2‐ethyl‐hexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4′‐bis(N,N‐bis(4‐(octyloxy) phenylamino)‐ 1,1′‐biphen‐4‐yl)quinoxaline) ( P 2) exhibited better photovoltaic performance than poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4‐(5‐octylthiophen‐2‐yl)phenyl)quinoxaline) ( P 1) in the bulk‐heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)/LiF/Al. A power conversion efficiency of 3.43%, an open‐circuit voltage of 0.80 V, and a short‐circuit current of 9.20 mA cm?2 were achieved in the P 2‐based cell under the illumination of AM 1.5, 100 mW cm?2. Importantly, this power conversion efficiency level is 2.29 times higher than that in the P 1‐based cell. Our work indicated that incorporating triphenylamine pendant in the D/A‐based polymers can greatly improved the photovoltaic properties for its resulting polymers.  相似文献   

11.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Two new side‐chain donor–acceptor (D‐A)‐based triphenylamine‐alt‐benzo[1,2‐b:4,5‐b′]dithiophene (TPA‐alt‐BDT) copolymers ( P1 and P2 ) with pendant benzothiadiazole (BT)/diketopyrrolopyrrole (DPP) in TPA unit were synthesized by Stille coupling polymerization. Their thermal, photophysical, electrochemical, blend film morphology and photovoltaic properties were investigated. Efficient bulk heterojunction polymer solar cells (PSCs) were obtained by solution process using both copolymers as donor materials and PC71BM as acceptor. The maximum power conversion efficiency (PCE) of 3.17% with a highest open‐circuit voltage (Voc) of 0.86V was observed in the P1 ‐based PSCs, while the maximum short‐circuit current (Jsc) of 10.77 mA cm?2 was exhibited in the P2 ‐based PSCs under the illumination of AM 1.5, 100 mW cm?2. The alternating binary donor units and pending acceptor groups played a significant role in tuning photovoltaic properties for this class of the side‐chain D–A‐based copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4103–4110  相似文献   

13.
Four novel two‐dimensional (2D) donor–acceptor (D‐A) type copolymers with different conjugated side chains, P1 , P2 , P3 , and P4 (see Fig. 1 ), are designed and synthesized for the application as donor materials in polymer solar cells (PSCs). To the best of our knowledge, there were few reports to systematically study such 2D polymers with D‐A type main chains in this area. The optical energy band gaps are about 2.0 eV for P1 – P3 and 1.67 eV for P4 . PSC devices using P1 – P4 as donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor in a weight ratio of 1:3 were fabricated and characterized to investigate the photovoltaic properties of the polymers. Under AM 1.5 G, 100 mA/cm2 illumination, a high open‐circuit voltage (Voc) of 0.9 V was recorded for P3 ‐based device due to its low HOMO level, and moderate fill factor was obtained with the best value of 58.6% for P4 ‐based device, which may mainly be the result of the high hole mobility of the polymers (up to 1.82 × 10?3 cm2/V s). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A new carbazole‐based electron accepting unit, 5‐(2,7‐dibromo‐9H‐carbazol‐9‐yl)benzo[a]phenazine (CBP), was newly designed and synthesized as the acceptor part of donor‐acceptor type low band‐gap polymers for polymer solar cells. The CBP was copolymerized with electron donating monomers such as benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(2‐octyl‐2‐thienyl)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) through Stille cross‐coupling polymerization, and produced two alternating copolymers, PBDT‐CBP and PBDTT‐CBP. An alternating copolymer (PBDT‐CBZ) consisted of 2,7‐dibromo‐9‐(heptadecan‐9‐yl)‐9H‐carbazole (CBZ) and BDT units was also synthesized for comparison. PBDT‐CBZ showed the maximum absorption at 430 nm and did not show absorption at wavelengths longer than 513 nm. However, CBP containing polymers (PBDT‐CBP and PBDTT‐CBP) showed a broad absorption between 300 and 850 nm due to the intramolecular charge transfer interaction between the electron donating and accepting blocks in the polymeric backbone. Bulk heterojunction photovoltaic devices were fabricated using the synthesized polymers as electron donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as electron acceptor. One of these devices showed a power conversion efficiency of 2.33%, with an open‐circuit voltage of 0.81 V, a short‐circuit current of 6.97 mA/cm2, and a fill factor (FF) of 0.41 under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013, 51, 2354–2365  相似文献   

15.
The synthesis of conjugated polymers 1 – 5 functionalized with 4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione in the backbone is reported and their use in the construction of organic solar cells is demonstrated. Increasing the molar ratio of 2,7‐dibromo‐3,8‐dihexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione, relative to 4,4′‐dihexyl‐5,5′‐dibromo‐2,2′‐bithiophene, in the copolymer synthesis significantly lowers the solubility of these polymers. The incorporation of highly conjugated 3,8‐dihexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione unit into the polymer backbone has been confirmed by UV–vis absorption. The observation of decreasing quantum yield for the emission in the order of 1 , 2 , 3 is consistent with copolymers with different comonomer content. The power conversion efficiencies of solar cells using blends of these polymers with PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) were determined to be 0.11% for polymer 1 , 0.33% for 2 , and 0.26% for 3 , respectively. Under identical white light illumination, the power conversion efficiency of the device based on polymer 2 /PCBM as the active layer was three times higher compared to that of device based on polymer 1 /PCBM. Owing to the limited solubility and poor film‐forming ability of polymer 3 , the power conversion efficiency of solar cell based on 3 /PCBM blend is lower than that of 2 /PCBM blend, but is still larger than that of 1 /PCBM blend. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2680–2688, 2008  相似文献   

16.
Porphyrin, despite chosen by Nature as light harvesting units, hasn't revealed its full potentials as a structural unit in porphyrin‐incorporated polymers (PPors). A novel PPor was synthesized to investigate the origins of the low performances of PPor‐based polymer solar cells (PSCs). The polymer features broad absorption in the blue‐light region, because the diindenothieno[2,3‐b]thiophene (DITT) unit extended the conjugation in the polymer backbone. PPor‐DITT/PC71BM based PSCs have a high Voc (0.79 V). Their low Jsc and fill factor (FF) were attributed to the un‐optimized morphology, as indicated by the photoluminescence quenching and atomic force microscopy (AFM) experiments. Using PPor‐DITT as a blue‐light harvesting dopant in an amorphous host leverage the strong 400–550 nm absorption of PPor‐DITT and circumvent the difficulties in reaching optimized morphology in the PPor/PCBM thin films. An addition of 2 wt % of PPor‐DITT in ternary‐blend PSCs resulted in a 10 % increase of external quantum efficiency (EQE) in the blue‐light region. However, in a crystalline host, the dopant decreased the crystallinity of the host and led to large drops in FF and power conversion efficiencies (PCEs). The study provides an alternative route and expands the application of PPors in PSCs as a blue‐light harvester in ternary‐blend PSCs using amorphous polymers as host. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Novel conjugated polymers composed of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2‐d]imidazole units are synthesized by Stille polycondensation. The resulting polymers display a longer wavelength absorption and well‐defined redox activities. The effective intramolecular charge‐transfer and energy levels of all polymers are elucidated by computational calculations. Bulk‐heterojunction solar cells based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as an n‐type semiconductor are fabricated, and their photovoltaic performances are for the first time evaluated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1067–1075  相似文献   

18.
Two regiochemically defined polythiophenes containing thiazolothiazole acceptor unit were synthesized by palladium(0)‐catalyzed Stille coupling reaction. The thermal, electrochemical, optical, charge transport, and photovoltaic properties of these copolymers were examined. Compared to P1 with head‐to‐head coupling of two middle thiophenes, P2 with head‐to‐tail coupling of two middle thiophenes exhibits 40 nm red shift of absorption spectrum in film and 0.3 eV higher HOMO level. Both polymers exhibit field‐effect hole mobility as high as 0.02 cm2 V?1 s?1. Polymer solar cells (PSCs) were fabricated based on the blend of the polymers and methanofullerene[6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). The PSC based on P1 :PC71BM (1:2, w/w) exhibits a power conversion efficiency of 2.7% under AM 1.5, 100 mW cm?2, two times of that based on P2 :PC71BM. The higher efficiency is attributed to lower HOMO (?5.6 eV) and smaller phase separation scale in P1 :PC71BM blend. Tiny change in thiophene connection of P1 and P2 lead to great difference in HOMO, phase separation scale, and efficiency of their photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A “zigzag” naphthodithiophene‐based copolymer, poly[4,9‐bis(2‐ethylhexyloxy)naphtho[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl‐alt‐1,3‐(5‐heptadecan‐9‐yl)‐4H‐thieno[3,4‐c]pyrrole‐4,6‐dione] (P1) is synthesized and its properties are compared to “linear” naphthodithiophene‐based copolymer, poly[4,9‐bis(2‐ethylhexyloxy)naphtho[2,3‐b:6,7‐d′]dithiophene‐2,7‐diyl‐alt‐1,3‐(5‐heptadecan‐9‐yl)‐4H‐thieno[3,4‐c]pyrrole‐4,6‐dione] (P2). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The results suggest that the backbone of the copolymer structure significantly influences the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the resultant thin films. In this work, the zigzag naphtho[1,2‐b:5,6‐b′]dithiophene‐based copolymer displays a good hole mobility and a high open‐circuit voltage; however, polymer solar cells in which the linear naphtho[2,3‐b;6,7‐d′]dithiophene‐based copolymer is used as the electron donor material perform better than the cells prepared using the zigzag naphtho[1,2‐b:5,6‐b′]dithiophene‐based copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 305–312  相似文献   

20.
Alternating narrow band gap (NBG) conjugated polymers derived from 6,6′,12,12′‐tetraoctylindeno[1,2‐b]fluorene (IF) and 2,3‐dimethyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DTTP), 2,3‐diphenyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DPTP) or 2,3‐dioctyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DOTP), named as PIF‐DTTP, PIF‐DPTP, and PIF‐DOTP, respectively, were synthesized by Suzuki coupling reaction and characterized. The photochemical stabilities of the copolymers and copolymer derived from IF and 5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DTP) were investigated by the UV absorptions, PL spectra, FT‐IR spectra, and photovoltaic properties of the copolymers as a function of UV irradiation time. The studies revealed that the degradation of thieno[3,4‐b]pyrazine (TP) ring under UV irradiation can be retarded or eliminated by introducing phenyl group into the 2,3‐positions of TP ring, and indicated that 2,3‐diphenylthieno[3,4‐b]pyrazine could be used as durable electron deficient moiety to achieve donor–acceptor NBG‐conjugated polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号