共查询到20条相似文献,搜索用时 15 毫秒
1.
《Surface and interface analysis : SIA》2005,37(1):90-91
This International Standard specifies a secondary ion mass spectrometric method using magnetic‐sector or quadrupole mass spectrometers for depth profiling of boron in silicon, and using stylus profilometry or optical interferometry for depth calibration. This method is applicable to single‐crystal, polycrystal or amorphous silicon specimens with boron atomic concentrations between 1 × 1016 and 1 × 1020 atoms cm?3, and to the crater depth of 50 nm or deeper. Optical interferometry is generally applicable to crater depths in the range 0.5–5 µm. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
The effect of Xe+ bombardment on the surface morphology of four different polymers, polystyrene (PS), poly(phenylene oxide), polyisobutylene, and polydimethylsiloxane, was investigated in ion energy and fluence ranges of interest for secondary ion mass spectrometry depth‐profiling analysis. Atomic force microscopy (AFM) was applied to analyze the surface topography of pristine and irradiated polymers. AFM analyses of nonirradiated polymer films showed a feature‐free surface with different smoothness. We studied the influence of different Xe+ beam parameters, including the incidence angle, ion energy (660–4000 eV), current density (0.5 × 102 to 8.7 × 102 nA/cm2), and ion fluence (4 × 1014 to 2 × 1017 ion/cm2). Xe+ bombardment of PS with 3–4 keV at a high current density did not induce any change in the surface morphology. Similarly, for ion irradiation with lower energy, no surface morphology change was found with a current density higher than 2.6 × 102 nA/cm2 and an ion fluence up to 4 × 1016 ion/cm2. However, Xe+ irradiation with a lower current density and a higher ion fluence led to topography development for all of the polymers. The roughness of the polymer surface increased, and well‐defined patterns appeared. The surface roughness increased with ion irradiation fluence and with the decrease of the current density. A pattern orientation along the beam direction was visible for inclined incidence between 15° and 45° with respect to the surface normal. Orientation was not seen at normal incidence. The surface topography development could be explained on the basis of the balance between surface damage and sputtering induced by the primary ion beam and redeposition–adsorption from the gas phase. Time‐of‐flight secondary ion mass spectrometry analyses of irradiated PS showed strong surface modifications of the molecular structure and the presence of new material. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 314–325, 2001 相似文献
3.
《Surface and interface analysis : SIA》2018,50(8):802-806
With regard to Secondary Ion Mass Spectroscopy (SIMS) measurement of atmospheric gas elements, a problem occurs that the detected signal includes background components caused by residual gas along with contained components. Relating to this issue, an available method to quantify the contained components by separating the background ones had been established for Dynamic SIMS. Time‐of‐Flight SIMS with sputtering ion gun has also applied for depth profiling as well as Dynamic SIMS. However, few studies have attempted to investigate the secondary ion behavior of the atmospheric gas elements for depth profiling by Time‐of‐flight SIMS, especially for low concentration levels. In this study, experimental examinations of the secondary ions of the atmospheric gas elements, such as oxygen, hydrogen, and carbon in the silicon substrate, has been conducted in various analytical conditions of TOF‐SIMS depth profiling mode. Under the analytical conditions of our study, it has been proved that the background intensity of these elements was correlated to the sputtering rate. For the analysis of Floating Zone Silicon substrate, the oxygen intensity of the background component was proportional to the inverse number of the sputtering rate. Based on these facts, the total detected intensity of the atmospheric gas elements was able to be separated into the contained components and background ones by changing the sputtering rate during TOF‐SIMS measurement. An experimental result has shown that the contained oxygen concentration in the Czochralsk Silicon substrate estimated by the “TOF‐SIMS Raster Change Method” has successfully agreed with the result by the Dynamic SIMS. 相似文献
4.
《Surface and interface analysis : SIA》2005,37(7):646-647
This International Standard specifies procedures for estimating three depth resolution parameters, via the leading‐edge decay length, the trailing‐edge decay length and Gaussian broadening, in SIMS depth profiling using multiple delta‐layer reference materials. This International Standard is not applicable to delta‐layers where the chemical and physical state of the near‐surface region, modified by the incident primary ions, is not in the steady state. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
《Surface and interface analysis : SIA》2018,50(7):705-712
We report the influence of 100 keV H+ ion beam irradiation on the surface morphology, crystalline structure, and transport properties of as‐deposited Al‐doped ZnO (Al:ZnO) thin films. The films were deposited on silicon (Si) substrate by using DC sputtering technique. The ion irradiation was carried out at various fluences ranging from 1.0 × 1012 to 3.0 × 1014 ions/cm2. The virgin and ion‐irradiated films were characterized by X‐ray diffraction, Raman spectroscopy, atomic force microscopy, and Hall probe measurements. Using X‐ray diffraction spectra, 5 points Williamson‐Hall plots were drawn to deduce the crystallite site and strain in Al:ZnO films. The analysis of the measurements shows that the films are almost radiation resistant in the structural deformation under chosen irradiation conditions. With beam irradiation, the transport properties of the films are also preserved (do not vary orders of magnitude). However, the surface roughness and the crystallite size, which are crucial parameters of the ZnO film as a gas sensor, are at variation with the ion fluence. As ion fluence increases, the root‐mean‐square surface roughness oscillates and the surface undergoes for smoothening with irradiation at chosen highest fluence. The crystallite size decreases initially, increases for intermediate fluences, and drops almost to the value of the pristine film at highest fluence. In the paper, these interesting experimental results are discussed in correlations with ion‐matter interactions especially energy losses by the ion beam in the material. 相似文献
6.
Hubert Gnaser Alexander Brodyanski Bernhard Reuscher 《Surface and interface analysis : SIA》2008,40(11):1415-1422
Focused ion beam implantation of 30‐keV Ga+ ions in single‐crystalline Si and Ge was investigated by SIMS, using Cs+ primary ions for sputtering. Nine different implantation fluences ranging from 1 × 1013 to 1 × 1017 Ga+‐ions/cm2 were used, with implanted areas of 40 × 40 µm2. The Ga concentration distributions of these implants were determined by SIMS depth profiling. Such 30‐keV Ga implantations were also simulated by a dynamic Monte‐Carlo code that takes into account the gradual change of the near‐surface composition due to the Ga incorporation. In both approaches, an essentially linear increase of the Ga peak concentrations with fluence is found up to ~1 × 1016cm?2; for higher fluences, the Ga content approaches a saturation level which is reached at about (1–2) × 1017cm?2. The measured and simulated peak concentrations of the Ga distributions are in good agreement. The most probable ranges obtained from the experiments correspond closely with the respective values from the simulations. The surface morphology caused by Ga+ implantation was investigated by atomic force microscopy (AFM). The AFM data indicate that for low fluences (<3 × 1015cm?2) the surface within the implanted areas is growing outward (i.e. is swelling). For increasingly higher fluences, sputter‐induced erosion of the surface becomes dominant and distinct craters are formed for fluences above ~1 × 1016cm?2. At the boundary of the implanted region a wall‐like structure is found to form upon Ga implantation; its height is growing with increasing fluence, reaching a value of ~15 nm at 1 × 1017 Ga+‐ions/cm2. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
7.
A complex poly(vinylidene difluoride) (PVdF)/poly(methyl methacrylate) (PMMA)‐based coil coating formulation has been investigated using time‐of‐flight SIMS (ToF‐SIMS). Employing a Bi3+ analysis source and a Buckminsterfullerene (C60) sputter source, depth profiles were obtained through the polymeric materials in the outer few nanometres of the PVdF topcoat. These investigations demonstrate that the PVdF coating's air/coating interface is composed principally of the flow agent included in the formulation. Elemental depth profiles obtained in the negative ion mode demonstrate variations in the carbon, oxygen and fluorine concentrations within the coating with respect to depth. All three elemental depth profiles suggest that the PVdF coating bulk possesses a constant material composition. The oxygen depth profile reveals the presence of a very thin oxygen‐rich sub‐surface layer in the PVdF coating, observed within the first second of the sputter/etch profile. Retrospectively, extracted mass spectra (from the elemental depth profile raw data set) of the PVdF coating sub‐surface and bulk layers indicates this oxygen‐rich sub‐surface layer results from segregation of the acrylic co‐polymers in the formulation towards the PVdF coating air/coating interface. Molecular depth profiles obtained in both the positive and negative secondary ion modes provide supporting evidence to that of the elemental depth profiles. The molecular depth profiles confirm the presence of a sub‐surface layer rich in the acrylic co‐polymers indicating segregation of the co‐polymers towards the PVdF topcoats air‐coating surface. The molecular depth profiles also confirm that the PVdF component of the topcoat is distributed throughout the coating but is present at a lower concentration at the air‐coating interface and in the sub‐surface regions of the coating, than in the coating bulk. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
8.
John S. Mangum Stephen Podowitz‐Thomas Jason Nikkel Chuanzhen Zhou Jacob L. Jones 《Surface and interface analysis : SIA》2017,49(10):973-977
The diffusion of Pb through Pb(Zr0.2Ti0.8)O3(PZT)/Pt/Ti/SiO2/Si thin film heterostructures is studied by using time‐of‐flight secondary ion mass spectrometry depth profiling. The as‐deposited films initially contained 10 mol% Pb excess and were thermally processed at temperatures ranging from 325 to 700°C to promote Pb diffusion. The time‐of‐flight secondary ion mass spectrometry depth profiles show that increasing processing temperature promoted Pb diffusion from the PZT top film into the buried heterostructure layers. After processing at low temperatures (eg, 325°C), Pb+ counts were low in the Pt region. After processing at elevated temperatures (eg, 700°C), significant Pb+ counts were seen throughout the Pt layer and into the Ti and SiO2 layers. Intermediate processing temperatures (400, 475, and 500°C) resulted in Pb+ profiles consistent with this overall trend. Films processed at 400°C show a sharp peak in PtPb+ intensity at the PZT/Pt interface, consistent with prior reports of a Pt3Pb phase at this interface after processing at similar temperatures. 相似文献
9.
《Surface and interface analysis : SIA》2003,35(10):829-834
The implantation of a high dose of high‐energy ions into an Si wafer causes amorphization of the original monocrystalline structure within a near‐surface layer. The in‐depth distribution of both Si atoms of the wafer and As ions implanted at a dose of 1 × 1017 ions cm?2 and an energy of 100 keV is studied. A novel method combining a repeated planar and broad sputter etching with differential weighing, surface analysis by total reflection x‐ray fluorescence and Tolansky interferometry is used for this investigation. Different depth profiles are recorded on the nanometre scale for the concentration defined as the mole ratio of As and Si, for the mass density of the implanted layer and for the number density of As and Si. The results generally correspond with measurements of Rutherford backscattering spectrometry and only deviate when the assumptions made for the mass density do not fit well. An appropriate approach to this quantity involves the number density of implanted ions but, furthermore, considers a variation of the number density of Si atoms during implantation, especially for a high dose and high‐energy implantation. The variation can be taken into account by a factor γ, where γ > 1 indicates compression and γ < 1 indicates extension of the original crystalline structure. For the above mentioned implantation, γ is measured separately for each sublayer to obtain accurate depth profiles. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
10.
《Surface and interface analysis : SIA》2003,35(4):382-386
A floating‐type low‐energy ion gun (FLIG) has been developed for high‐resolution depth profiling in ultrahigh vacuum (UHV). This UHV‐FLIG allows Ar+ ions of primary energy down to 50 eV to be provided with high current intensity. The developed UHV‐FLIG was sufficiently compact, being ~30 cm long, to be attached to a commercial surface analytical instrument. The performance of the UHV‐FLIG was measured by attaching it to a scanning Auger electron microprobe (JAMP‐10, Jeol), the base pressure of which in the analysis chamber was ~1 × 10?7 Pa. The vacuum condition of ~5 × 10?6 Pa was maintained during operation of the UHV‐FLIG without a differential pumping facility. Current density ranged from 41 to 138 µA cm?2 for Ar+ ions of primary energy 100–500 eV at the working distance of 50 mm. This ensures a sputtering rate of ~10 nm h?1 with 100 eV Ar+ ions for Si, leading to depth profiling of high resolution in practical use. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
Hideaki Bando Keiji Tamura Ryuichi Shimizu Masahiko Inoue 《Surface and interface analysis : SIA》2007,39(1):9-15
A Monte Carlo (MC) simulation program written in C++ has been newly developed to describe the dynamic processes of depth profiling with low energy ions. This MC simulation was applied to the depth profiling of GaAs/AlAs reference material for Ne+, Ar+, and Xe+ ions to elucidate the depth resolution attained by surface analytical techniques. The result clearly predicts that there is a considerable difference between the depth resolutions estimated from the leading and trailing edges of Ne+ and Xe+ ions, whereas the difference is quite small for Ar+ ions. Systematic investigation of the dependence of theoretical depth resolution on primary ion energy has revealed that the preferential sputtering primarily caused by the difference in energy transfer to target atoms through elastic collisions between incident ions and target atoms results in the difference between the leading and trailing edges. The inclusion of other factors, e.g. preferential sputtering effect caused by the metallization of Al atoms on the topmost surface, etc. for further improvement of the MC simulation modeling before accommodating quantitative arguments on the depth resolution is strongly recommended. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
12.
Yuta Yokoyama Tomoko Kawashima Mayumi Ohkawa Hideo Iwai Satoka Aoyagi 《Surface and interface analysis : SIA》2015,47(4):439-446
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) is a powerful tool for determining surface information of complex systems such as polymers and biological materials. However, the interpretation of ToF‐SIMS raw data is often difficult. Multivariate analysis has become effective methods for the interpretation of ToF‐SIMS data. Some of multivariate analysis methods such as principal component analysis and multivariate curve resolution are useful for simplifying ToF‐SIMS data consisting of many components to that explained by a smaller number of components. In this study, the ToF‐SIMS data of four layers of three polymers was analyzed using these analysis methods. The information acquired by using each method was compared in terms of the spatial distribution of the polymers and identification. Moreover, in order to investigate the influence of surface contamination, the ToF‐SIMS data before and after Ar cluster ion beam sputtering was compared. As a result, materials in the sample of multiple components, including unknown contaminants, were distinguished. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
Hao Mei Travis S. Laws Tanguy Terlier Rafael Verduzco Gila E. Stein 《Journal of polymer science. Part A, Polymer chemistry》2022,60(7):1174-1198
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used for chemical analysis of surfaces. ToF-SIMS is a powerful tool for polymer science because it detects a broad mass range with good mass resolution, thereby distinguishing between polymers that have similar elemental compositions and/or the same types of functional groups. Chemical labeling techniques that enhance contrast, such as deuterating or staining one constituent, are generally unnecessary. ToF-SIMS can generate both two-dimensional images and three-dimensional depth profiles, where each pixel in an image is associated with a complete mass spectrum. This Review begins by introducing the principles of ToF-SIMS measurements, including instrumentation, modes of operation, strategies for data analysis, and strengths/limitations when characterizing polymer surfaces. The sections that follow describe applications in polymer science that benefit from characterization by ToF-SIMS, including thin films and coatings, polymer blends, composites, and electronic materials. The examples selected for discussion showcase the three standard modes of operation (spectral analysis, imaging, and depth profiling) and highlight practical considerations that relate to experimental design and data processing. We conclude with brief comments about broader opportunities for ToF-SIMS in polymer science. 相似文献
14.
《Surface and interface analysis : SIA》2004,36(7):645-648
Problems on the quantitative analyses of impurities in secondary ion mass spectrometry (SIMS) were revealed by analysing standard samples. One problem is the interference confirmed when 27Al16O, 63Cu and 67Zn16O negative ions were measured, which can be avoided by measuring a high‐resolution mass spectrum. Another problem is that light elements such as hydrogen can be measured accurately only after using a cooling system to reduce the background intensity. These remedies were applied in the quantitative analysis of single‐crystal ZnO grown by hydrothermal and vapour transport techniques. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
15.
Nihan Akin Yunus Ozen H. Ibrahim Efkere Mehmet Cakmak Suleyman Ozcelik 《Surface and interface analysis : SIA》2015,47(1):93-98
Al‐doped zinc oxide (AZO) thin films were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates by radio frequency (RF) magnetron sputtering method at room temperature. The effects of film thickness on the surface structure and the photoluminescence properties of the films were investigated by atomic force microscopy (AFM), secondary ion mass spectroscopy (SIMS) and room temperature photoluminescence (PL). AFM analysis showed that the surface of all films was extremely flat and uniform at nanoscale. Root mean square (RMS) value of the surface roughness which scanned the surface area of 3 µm by 3 µm and grain size increased with increasing the film thickness. Thus, the surface morphology of the films became rough because of the coarse grains. The depth profile of AZO layers was analyzed by SIMS. It was found that the thickness of the AZO layer is almost same with the desired film thickness. The PL intensity of the dominant peak decreased and shifted slightly towards the shorter wavelengths with increasing the film thickness. According to the relationships between luminescence intensity and crystalline characteristics, it was observed that the intensity of the peak decreased by the increased surface area of the grains. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Their characteristics as persistent organic pollutant and their toxicity (2,3,7,8-TCDD is named as a known human carcinogen) make the dioxins and related compounds a focus of interest in environmental analytical chemistry. In view of the widespread distribution of dioxins in the environment, these compounds must be monitored in several matrices, such as air, effluents, soil, sludge and biological samples. The analytical methodologies are especially difficult owing to the complexity of the mixtures of congeners (210 PCDD/Fs and 209 PCBs) and to the low detection limits required (ppb to ppq). Moreover, time-consuming sample preparation steps are needed owing to the presence of a large number of interfering compounds. The different toxicity of each congener requires the development of congener specific methods. This review of trace dioxin determination by mass spectrometry (MS) includes sample preparation and chromatographic separation. In this Special Feature, the use of different MS techniques such as low-resolution MS (LRMS) and high-resolution MS (HRMS) is discussed in terms of selectivity and sensitivity. The performances of other MS techniques, such as tandem MS (MS/MS) and time-of-flight MS (ToFMS), are compared. Quantification techniques, especially the isotopic dilution method, are also discussed. Conclusions and future perspectives are outlined. 相似文献
17.
The so‐called Storing Matter technique allows the matrix effect observed in secondary ion mass spectrometry to be successfully circumvented. We therefore investigate in this work the depth‐profiling capabilities of the Storing Matter technique with a goal of developing protocols for quantitative depth profiles. The effect of the steps involved in the Storing Matter process on the main parameters such as the depth resolution and the dynamic range is studied experimentally and by simulations. A semi‐automated process consisting of the sputter‐deposition process on a rotating collector in the Storing Matter instrument followed by a complete analysis of the collector by secondary ion mass spectrometry is defined. This protocol is applied to depth profile a B implant in Si and a Sn/Zn multilayered sample, and the results are compared with those obtained with conventional secondary ion mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
18.
《Surface and interface analysis : SIA》2005,37(3):343-347
Auger electron spectroscopy (AES) sputter depth profiling of an ISO reference material of the GaAs/AlAs superlattice was investigated using low‐energy Ar+ ions. Although a high depth resolution of ~1.0 nm was obtained at the GaAs/AlAs interface under 100 eV Ar+ ion irradiation, deterioration of the depth resolution was observed at the AlAs/GaAs interface. The Auger peak profile revealed that the enrichment of Al due to preferential sputtering occurred during sputter etching of the AlAs layer only under 100 eV Ar+ ion irradiation. In addition, a significant difference in the etching rates between the AlAs and GaAs layers was observed for low‐energy ion irradiation. Deterioration of the depth resolution under 100 eV Ar+ ion irradiation is attributed to the preferential sputtering and the difference in the etching rate. The present results suggest that the effects induced by the preferential sputtering and the significant difference in the etching rate should be taken into account to optimize ion etching conditions using the GaAs/AlAs reference material under low‐energy ion irradiation. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
19.
《Surface and interface analysis : SIA》2004,36(12):1575-1581
The interfacial region of a model multilayer coating system on an aluminium substrate has been investigated by high‐resolution time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Employing ultra‐low‐angle microtomy (ULAM), the interface between a poly(vinylidene difluoride) (PVdF)‐based topcoat and a poly(urethane) (PU)‐based primer ‘buried’ >20 µm below the PVdF topcoat's air/coating surface was exposed. Imaging ToF‐SIMS and subsequent post‐processing extraction of mass spectra of the ULAM‐exposed interface region and of the PVdF topcoat and PU primer bulks indicates that the material composition of the polymer/polymer interface region is substantially different to that of the bulk PVdF and PU coatings. Analysis of the negative ion mass spectra obtained from the PVdF/PU interface reveals the presence of a methacrylate‐based component or additive at the interface region. Reviewing the topcoat and primer coating formulations reveals that the PVdF topcoat formulation contains methyl methacrylate (MMA)–ethyl acrylate (EA) acrylic co‐polymer components. Negative ion ToF‐SIMS analysis of an acrylic co‐polymer confirms that it is these components that are observed at the PVdF/PU interface. Post‐processing extraction of ToF‐SIMS images based on the major ions of the MMA–EA co‐polymers reveals that these components are observed in high concentration at the extremities of the PVdF coating, i.e. at the polymer/polymer interface, but are also observed to be distributed evenly throughout the bulk of the PVdF topcoat. These findings confirm that a fraction of the MMA–EA acrylic co‐polymers in the formulation segregate to the topcoat/primer interface where they enhance the adhesive properties exhibited by the PVdF topcoat towards the underlying PU primer substrate. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
20.
《Surface and interface analysis : SIA》2004,36(7):640-644
The chemical composition variation of silicon under 4 keV O2+ ion beam bombardment at different incident angles was studied by in situ small‐area XPS. The changes in secondary ion profile (30Si+, 44SiO+, 56Si2+, 60SiO2+) during oxygen ion beam bombardment also have been monitored. We present a direct correlation of the changes in secondary ion depth profile with surface composition during sputtering. Evolution of the secondary ion profile obtained from SIMS shows similar trends with variation of oxygen concentration in the crater surface measured by XPS. It is shown that when the oxygen ion beam incidence angle is < 40° silicon dioxide is the dominant species on the crater surface and the matrix ion species ratio (MISR) value for 44SiO+/56Si2+ is higher than for 30Si+/56Si2+. For incidence angles of >40°, the formation of sub‐oxide is favoured and thus the MISR value for 44SiO+/56Si2+ is lower than for 30Si+/56Si2. At 40° bombardment there are similar amounts of SiO2 and sub‐oxides present on the crater surface and the MISR values for 44SiO+/56Si2+ and 30Si+/56Si2+ are also similar. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献