首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found that non‐magnetic defects in two‐dimensional topological insulators induce bound states of two kinds for each spin orientation: electron‐ and hole‐like states. Depending on the sign of the defect potential these states can be also of two kinds with different distribution of the electron density. The density has a maximum or minimum in the center. A surprising effect caused by the topological order is a singular dependence of the bound‐state energy on the defect potential.

  相似文献   


2.
We report the study of transport and magnetic properties of the YbB6–δsingle crystals grown by inductive zone melting. A strong disparity in the low temperature resistivity, Seebeck and Hall coefficients is established for the samples with the different level of boron deficiency. The effective parameters of the charge transport in YbB6–δ are shown to depend on the concentration of intrinsic defects, which is estimated to range from 0.09% to 0.6%. The pronounced variation of Hall mobility μH found for bulk holes is induced by the decrease of transport relaxation time from τ ≈ 7.7 fs for YbB5.994 to τ ≈ 2.2 fs for YbB5.96. An extra contribution to conductivity from electrons with μH≈ –1000 cm2 V–1 s–1 and the very low concentration n /nYb≈ 10–6 discovered below 20 K for all the single crystals under investigation is suggested to arise from the surface electron states appeared in the inversion layer due to the band bending. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
4.
Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n-n junction and n-p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ 0 〈π/2 and r/2 〈 0 ≤ π, the transmission probability of the n-n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n-p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs.  相似文献   

5.
高艺璇  张礼智  张余洋  杜世萱 《物理学报》2018,67(23):238101-238101
新材料的发现促进了科学与技术的进步.拓扑绝缘体是近期材料领域新的研究热点,相关研究的进一步深入,不仅加深了人们对材料物理性质的理解,也为其在自旋电子学和量子计算机等领域的潜在应用提供了有价值的参考.近年来,理论工作预测了一系列由金属和有机物构筑的二维有机拓扑绝缘体,本文主要介绍六角对称的金属有机晶格与Kagome金属有机晶格两类典型的二维有机拓扑绝缘体的研究进展,其中重点介绍了理论预测的氰基配位二维本征有机拓扑绝缘体.除了理论计算方面的工作,还简要介绍了关于二维有机拓扑绝缘体材料合成方面的实验工作.二维有机拓扑绝缘体的理论与实验研究不仅拓展了拓扑绝缘体的研究体系,还为寻找新的拓扑绝缘体材料提供了思路.  相似文献   

6.
王建峰  王娜  黄华卿  段文晖 《中国物理 B》2016,25(11):117313-117313
The rise of topological insulators in recent years has broken new ground both in the conceptual cognition of condensed matter physics and the promising revolution of the electronic devices.It also stimulates the explorations of more topological states of matter.Topological crystalline insulator is a new topological phase,which combines the electronic topology and crystal symmetry together.In this article,we review the recent progress in the studies of SnTe-class topological crystalline insulator materials.Starting from the topological identifications in the aspects of the bulk topology,surface states calculations,and experimental observations,we present the electronic properties of topological crystalline insulators under various perturbations,including native defect,chemical doping,strain,and thickness-dependent confinement effects,and then discuss their unique quantum transport properties,such as valley-selective filtering and helicity-resolved functionalities for Dirac fermions.The rich properties and high tunability make SnTe-class materials promising candidates for novel quantum devices.  相似文献   

7.
关童  滕静  吴克辉  李永庆 《物理学报》2015,64(7):77201-077201
本文报道了拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中线性磁阻问题的系统性研究工作. 此体系中, 线性磁阻在很宽的温度和磁场范围内出现: 磁场高达18 T时磁阻仍没有饱和趋势, 并且当温度不高于50 K时, 线性磁阻的大小对温度的变化不敏感. 栅压调控化学势可明显改变线性磁阻的大小. 当化学势接近狄拉克点时, 线性磁阻最为显著. 这些结果说明电荷分布的不均匀性是引起该材料线性磁阻的根源.  相似文献   

8.
The advantages of using the chlorinated carbon precursor chloromethane instead of the hydrocarbon precursor propane in low‐temperature (1300 °C) epitaxial growth of 4H‐SiC were investigated. Chloromethane was found to provide a much wider process window for variation of the C/Si ratio between the lower boundary corresponding to the formation of condensed silicon face and the upper boundary corresponding to polytype inclusions and polycrystalline degradation, which is critical for achieving high growth rates without epilayer quality degradation. Use of a high Cl/Si ratio provided by HCl addition in the propane‐based epitaxial growth did not eliminate the critical differences between chloro‐carbon and hydro‐carbon precursors. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
葛翠环  李洪来  朱小莉  潘安练 《中国物理 B》2017,26(3):34208-034208
Atomically thin two-dimensional(2D) layered materials have potential applications in nanoelectronics, nanophotonics, and integrated optoelectronics. Band gap engineering of these 2D semiconductors is critical for their broad applications in high-performance integrated devices, such as broad-band photodetectors, multi-color light emitting diodes(LEDs), and high-efficiency photovoltaic devices. In this review, we will summarize the recent progress on the controlled growth of composition modulated atomically thin 2D semiconductor alloys with band gaps tuned in a wide range, as well as their induced applications in broadly tunable optoelectronic components. The band gap engineered 2D semiconductors could open up an exciting opportunity for probing their fundamental physical properties in 2D systems and may find diverse applications in functional electronic/optoelectronic devices.  相似文献   

10.
张巍  陈昱  付晶  陈飞飞  沈祥  戴世勋  林常规  徐铁峰 《物理学报》2012,61(5):56801-056801
介绍了几种常见的硫系薄膜制备方法, 根据现有实验条件采用热蒸发法和磁控溅射法制备出Ge-Sb-Se三元体系硫系薄膜, 通过台阶仪测试薄膜的厚度和表面粗糙度, 计算出两种制备方法的成膜速率, 并通过X射线光电子能谱测试了两种制备方法所得薄膜与块体靶材组分的差别. 利用Z扫描技术和分光光度计测试了热蒸发法制备所得薄膜的三阶非线性性能和透过光谱, 计算出非线性折射率、非线性吸收系数和薄膜厚度等参数. 结果表明热蒸发法制备Ge-Sb-Se薄膜具有良好的物理结构和光学特性, 在集成光学器件方面很高的应用潜力.  相似文献   

11.
12.
Three-dimensional (3D) topological insulators (TIs) have been studied for approximately fifteen years, but those made from group-IV elements, especially Ge and Sn, seem particularly attractive owing to their nontoxicity, sizable intrinsic spin–orbit coupling (SOC) strength and natural compatibility with the current semiconductor industry. However, group-IV elemental TIs have rarely been reported, except for the low temperature phase of α-Sn under strain. Here, based on first-principles calculations, we propose new allotropes of Ge and Sn, named T5-Ge/Sn, as desirable TIs. These new allotropes are also highly anisotropic Dirac semimetals if the SOC is turned off. To the best of our knowledge, T5-Ge/Sn are the first 3D allotropes of Ge/Sn that possess topological states in their equilibrium states at room temperature. Additionally, their isostructures of C and Si are metastable indirect and direct semiconductors. Our work not only reveals two promising TIs, but more profoundly, we justify the advantages of group-IV elements as topological quantum materials (TQMs) for fundamental research and potential practical applications, and thus reveal a new direction in the search for desirable TQMs.  相似文献   

13.
14.
We propose a physical model based on disordered (a hole punched inside a material) monolayer transition metal dichalcogenides (TMDs) to demonstrate a large‐gap quantum valley Hall insulator. We find an emergence of bound states lying inside the bulk gap of the TMDs. They are strongly affected by spin–valley coupling, rest‐ and kinetic‐mass terms and the hole size. In addition, in the whole range of the hole size, at least two in‐gap bound states with opposite angular momentum, circulating around the edge of the hole, exist.Their topological insulator (TI) feature is analyzed by the Chern number, characterized by spacial distribution of their probabilities and confirmed by energy dispersion curves (energy vs. angular momentum). It not only sheds light on overcoming low‐temperature operating limitation of existing narrow‐gap TIs, but also opens an opportunity to realize valley‐ and spin‐qubits. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
We investigate the magnetic properties of Ho‐doped Bi2Te3 thin films grown by molecular beam epitaxy. Analysis of the polarized X‐ray absorption spectra at the Ho M5 absorption edge gives an effective 4f magnetic moment which is ~45% of the Hund's rule ground state value. X‐ray magnetic circular dichroism (XMCD) shows no significant anisotropy, which suggests that the reduced spin moment is not due to the crystal field effects, but rather the presence of non‐magnetic or antiferromagnetic Ho sites. Extrapolating the temperature dependence of the XMCD measured in total electron yield and fluorescence yield mode in a field of 7 T gives a Curie–Weiss temperature of ?CW ≈ –30 K, which suggests antiferromagnetic ordering, in contrast to the paramagnetic behavior observed with SQUID magnetometry. From the anomaly of the XMCD signal at low temperatures, a Néel temperature TN between 10 K and 25 K is estimated. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
M. Pomoni  A. Giannopoulou 《哲学杂志》2013,93(25):3441-3461
Exact expressions for the out of phase modulated photocurrent (MPC), the so-called Y signal, with a clear physical insight for density of states (DOS) spectroscopy are derived without any approximation. It is found that, apart from the capture rate of the majority carriers into the probed gap states, additional mixed contributions from the recombination processes of the free majority carriers with trapped minority carriers may be important for the Y signal of lower frequencies. These additional contributions prevent the extraction of a reliable DOS. They become important as long as the capture coefficient for the majority carriers of the recombination centers, where the minority carriers are trapped, is comparable to or higher than that of the recombination centers were the majority carriers are trapped. In this case, the recombination rate is relatively high and the mixed contributions from the recombination processes can be detectable in the experimental Y signal and may also induce a phase lead. Taking advantage of this behavior it can be experimentally verified when these recombination processes are negligible in order to safely extract the accurate DOS parameters.  相似文献   

17.
18.
19.
The present paper reports the steady state photoconductivity and photosensitivity response of thermally evaporated amorphous thin films of Se90Sb10-xAgx(x = 2, 4, 6, 8, 10). Temperature dependence of dark conductivity is studied and activation energy is calculated for different samples. Temperature dependence of photoconductivity is also studied at different intensities. From temperature dependence of photoconductivity activation energy is computed at different intensities which are found to vary from 0.26 to 0.47 eV. Intensity dependence of photoconductivity has also been studied at different temperatures. These curves are plotted on logarithmic scale and found to be straight lines which show that photoconductivity follows a power law with intensity. Composition dependence of dark conductivity, activation energy of DC conduction and photosensitivity show that these parameters are highly. composition dependent and show a discontinuity at a particular composition when Ag concentration becomes 6 at. %. This is explained in terms of transition from floppy state to mechanically stabilized state at this composition.  相似文献   

20.
A novel topological insulator with orthorhombic crystal structure is demonstrated. It is characterized by quasi one‐dimensional, conducting atomic chains instead of the layered, two‐dimensional sheets known from the established Bi2(Se,Te)3 system. The Sb‐doped Bi2Se3 nanowires are grown in a TiO2‐catalyzed process by chemical vapor deposition. The binary Bi2Se3 is transformed from rhombohedral to orthorhombic by substituting Sb on ~38% of the Bi sites. Pure Sb2Se3 is a topologically trivial band insulator with an orthorhombic crystal structure at ambient conditions, and it is known to transform into a topological insulator at high pressure. Angle‐resolved photoemission spectroscopy shows a topological surface state, while Sb doping also tunes the Fermi level to reside in the bandgap. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号