首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The structure and spectroscopic properties of the ground and the lowest excited electronic states of the alkali hydride cation NaH+ have been investigated using an ab initio approach. In this approach, a nonempirical pseudopotential for the Na+ core has been used and a core–core and a core‐valence correlation corrections have been added. The adiabatic potential energy curves and the molecular spectroscopic constants for numerous electronic states of 2Σ+, 2Π, and 2Δ symmetries, dissociating up to Na (4d) + H+ and Na+ + H (3d), have been calculated. As no experimental data are available, we discuss our results by comparing with the available theoretical calculations. A satisfying agreement has been found for the ground state with previous works. However, a clear disagreement between this study and the model potential work of Magnier (Magnier, J. Phys. Chem. A 2005, 109, 5411) has been observed for several excited states. Numerous avoided crossings between electronic states of 2Σ+ and 2Π symmetries have been found and analysed. They are related to the interaction between the potential energy curves and to the charge transfer process between the two ionic systems Na+H and NaH+. Furthermore, we provide an extensive set of data concerning the transition dipole moments from X2Σ+ and the 22Σ+ states to higher excited states of 2Σ+ and 2Π symmetries. Finally, the adiabatic potential energy curves of the ground (X2Σ+) and the first (22Σ+) excited states and the transition dipole moments between these states are used to evaluate the radiative lifetimes for the vibrational levels of the 22+ state for the first time. In addition to the bound–bound contribution, the bound‐free term has been evaluated and added to the total radiative lifetime. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The potential energy curves of 26 electronic states of 2Σ+g, u, 2Πg, u, and 2Δg, u symmetries of the alkali dimer Na2+, dissociating up to Na(4d) + Na+, are investigated using an ab initio approach involving a nonempirical pseudopotential for the Na+(1s22s22p6) core and core‐valence correlation corrections. Furthermore, the transition dipole functions between many electronic states and vibrational energy spacings are presented. The spectroscopic constants of these electronic states are extracted and compared with the available theoretical and experimental results. A very good agreement is observed, especially, for the ground and the first excited states. However, the comparison between our study and the model potential (MP) calculations (Magnier and Masnnou‐Seeuws Mol. Phys. 1996, 89, 711) for several states has shown a clear disagreement. The MP well depths of the 3‐42Σ+g, 12Πg, 3‐42Πg, and 22Πu electronic states are largely underestimated. In addition, the 5‐72Σ+g, 3‐72Σ+u, 22Πg, 42Πg, and 1‐22Δu MP electronic states are repulsive, although in this work, they are attractive with potential well depths of some hundreds of cm?1. The data presented in this study are very useful for studies on ion–atom interaction and cold collision in the presence of electromagnetic fields. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The highly accurate valence internally contracted multireference configuration interaction (MRCI) approach has been employed to investigate the potential energy curves (PECs) for the X2Π, b4Σ?, C2Σ? states of PO and the X1Σ+ state of PO+. For these electronic states, the spectroscopic parameters of the isotopes (P16O, P18O, P16O+, and P18O+) have been determined and compared with those of the investigations reported in the literature. The comparison shows that excellent agreement exists between the present results and the available experiments. With the PECs determined here, the first 30 vibrational states for P16O(X2Π, b4Σ?), P18O(X2Π, b4Σ?), P16O+(X1Σ+), and P18O+(X1Σ+) are computed when the rotational quantum number J equals zero (J = 0). The vibrational level G(υ), inertial rotation constant Bυ and centrifugal distortion constant Dυ are determined when J = 0. All the results of vibrational states except for P16O (X2Π) are reported for the first time. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
The CASPT2 potential energy curves (PECs) for O‐loss dissociation from the X2Π, A2Π, B2Σ+, C2Σ+, 14Σ?, 12Σ?, and 14Π states of the OCS+ ion were calculated. The PEC calculations indicate that X2Π, 14Σ?, 12Σ?, and 14Π correlate with CS+(X2Σ+) + O(3Pg); A2Π and B2Σ+ correlate with CS+(A2Π) + O(3Pg); and C2Σ+ probably correlates with CS+(X2Σ+) + O(1Dg). The CASSCF minimum energy crossing point (MECP) calculations were performed for the C2Σ+/14Σ?, C2Σ+/14Π, A2Π/14Σ?, A2Π/12Σ?, A2Π/14Π, and B2Σ+/12Σ? state pairs and the spin‐obit couplings were calculated at the located MECPs. A conical intersection point between the B2Σ+ and C2Σ+ potential energy surfaces was found at the CASSCF level. Based on our calculations, seven O‐loss predissociation processes of the C2Σ+ state are suggested and an appearance potential value of 7.13 eV for the CS+ + O product group is predicted. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
Potential energy curves of 22 electronic states of RhN have been calculated by the complete active space second‐order perturbation theory method. The X1Σ0+ is assigned as the ground state, and the first excited state a3Π0+ is 978 cm?1 higher. The 1Δ(I) and B1Σ+ states are located at 9521 and 13,046 cm?1 above the ground state, respectively. The B1Σ+ state should be the excited state located 12,300 cm?1 above the ground state in the experimental study. Moreover, two excited states, C1Π and b3Σ+, are found 14,963 and 15,082 cm?1 above the X1Σ+ state, respectively. The transition C1Π1–X1Σ0+ may contribute to the experimentally observed bands headed at 15,071 cm?1. There are two excited states, D1Δ and E1Σ+, situate at 20,715 and 23,145 cm?1 above the X1Σ+ state. The visible bands near 20,000 cm?1 could be generated by the electronic transitions D1Δ2–a3Π1 and E1Σ+0–X1Σ+0 because of the spin–orbit coupling effect. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Multiconfiguration self-consistent field and multiconfiguration reference interaction including the Davidson’s correction techniques were employed to calculate the potential energy curves (PECs) of the BeS/BeS+ electronic states correlating to the 4/5 lowest dissociation limits. After nuclear motion treatment, we deduced reliable spectroscopic data for the neutral and cationic bound states. For BeS, the transition moments and spin-orbit couplings were also evaluated and used later with the PECs to deduce the rovibronic transition probabilities and the radiative lifetimes in the low-lying states, and to investigate the unimolecular decomposition processes of BeS (X1Σ+, A1Π, 3Σ+ and B1Σ+) leading to Be(1Sg) + S(3Pg). The prominent mechanism is a spin-orbit induced predissociation via the repulsive BeS(13Σ) state. Finally, we give the single ionization spectrum of BeS (X1Σ+) populating the BeS+ (X2Π, 12Σ, 12Σ+, 12Δ, 22Σ+, 22Π and 32Π) electronic states. The adiabatic ionisation energy of BeS is estimated to be ∼9.15 eV.  相似文献   

7.
New emission systems have been observed from the helium afterglow reaction of GeH4 in the 520–610 nm region. On the basis of the rotational analysis, they were assigned to the a 3Π0+-X1Σ+ and a3Π1-X1Σ+ subsystems of GeH+. Spectroscopic constants have been determined for the GeH+ (a3Π0+, a3Π1, X1Σ+) states.  相似文献   

8.
9.
The electron spectrum of the tungsten monooxide molecule is observed in the 550–800 nm region using intracavity laser absorption spectroscopy. The WO molecules are produced in a pulsed electric discharge through the mixture of tungsten hexacarbonyl vapors. The spectrum is recorded using a diffraction spectrometer (resolving power of 240000). The bands in the 16400–15500 cm–1 region are assigned to the 3Π0–X3Σ+ component of the 3Π0–X3Σ+3+ electron transition. The rotational analysis of the 0-0 and 1-0 bands is carried out and the rotational constants for the ground X″3Σ and the exited 3Π0 states are computed: В′ = 0.385738 cm–1, B″ = 0.415538 cm–1.  相似文献   

10.
Potential energy curves for the low-lying electronic states of PdH have been calculated using the MRCI method with scalar relativistic and spin-orbit corrections, and all electronic states correlating to the 4d10 (1S), 4d9 5s1 (3D), 4d9 5s1 (1D) and 4d8 5s2 (3F) states of Pd were included. Potential energy curves for the individual Ω states have been obtained, and the experimentally observed spectra of both PdH and PdD isotopologues have been assigned appropriately based on the ab initio results. Einstein A coefficients were calculated for other possible transitions from the low-lying electronic states to the X2Σ+ ground state. Diagonal and off-diagonal matrix elements of the spin-orbit Hamiltonian were calculated for all vibrational levels of the X2Σ+, 12Δ, 12Π, 22Σ+ and 32Σ+ states, and it was found from the eigenvectors that the vibrational wavefunctions of the 12Δ3/2 and 12Π3/2 states are mixed significantly in both PdH and PdD isotopologues.  相似文献   

11.
Relativistic configuration interaction calculations are carried out to study the electronic structure and spectroscopic properties of InI and InI+. Potential energy curves of the ground and a number of low‐lying states are constructed. Spectroscopic parameters of the bound states of both species are computed and compared with the experimental and other theoretical data. Effects of spin‐orbit coupling on the spectroscopic properties are studied. Because of the presence of the heavy atoms the effect is large. The spin‐orbit splitting of the ground state (X2Π) of InI+ is more than 8350 cm?1. As a result of the strong spin‐orbit interaction between X2Π and A2Σ+ of InI+, the potential energy curve of A2Σ becomes repulsive. Radiative lifetimes for the spin‐forbidden transitions such as A3Π?X1Σ and B3Π1 ?X1Σ of InI and spin‐allowed transitions such as B2Σ+?A2Σ+, C2Π?A2Σ+, and B2Σ+?X2Π are calculated. Vertical and adiabatic ionization energies of InI and the electric dipole moments of both the neutral and ionic species are estimated. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

12.
The Equations of Motion method has been applied in the calculation of potential energy curves for the X2Σ+g, A2Πu and B2Σ+u states of N+2. Results are also reported for a new dissociative 2Σ+g state. The theoretical curves are directly compared with the experimental ones as well as in terms of spectroscopic constants. The applicability of the Equations of Motion method to this type of problem is critically examined and discussed with regard to the choice of basis set, numerical effort and agreement with experiment.  相似文献   

13.
《Chemical physics》2005,308(1-2):1-6
CAS-SCF/MRCI calculations have been performed for 15 molecular states in the representation 2S+1Λ(+/−) (neglecting spin–orbit effects) for the molecule YI. The corresponding 33 molecular states in the representation Ω(+/−) (including spin–orbit effects) have been calculated using a semi-empirical spin–orbit pseudopotential built up for yttrium. Calculated potential energy curves and spectroscopic constants are reported, to the best of our knowledge they are the first ones from ab initio methods for this molecule. Present results are compared to experimental accurate data available for the ground X1Σ+ and 3 excited states (1)1Π, (2)1Σ+ and (2)1Π.  相似文献   

14.
Local potential calculations have been carried out for the first eight 2Σg, 2Σu and the first five 2Πg, 2Πu states of Li2+. The results indicate the usefulness of calculating highly excited potential curves by a local potential method.  相似文献   

15.
A wide adiabatic study is performed for NaRb molecule, involving 151Σ+ electronic states including the ionic state Na?Rb+, as well as 143Σ+, 1–91,3Π, and 1–51,3Δ states. This investigation is performed using an ab initio approach which involves the effective core potential, the core polarization potential with l‐dependent cut‐off functions. The NaRb system has been treated as a two‐electron system and the full valence configuration interaction is easily achieved. The spectroscopic constants Re, De, Te, ωe, ωexe, Be, and D0 for all these states are derived. We have also computed the vibrational levels as well their spacing for different values of J. In addition, permanent and transition dipole moments are determined and analyzed. The Dunham coefficients have been used to perform experimental spacing to compare directly with our results. The present calculations on NaRb extend previous theoretical works to numerous electronic excited states in the various symmetries. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
李跃勋  高涛  朱正和 《中国化学》2006,24(10):1321-1326
Using the density functional method B3LYP with relativistic effective core potential(RECP)for Pu atom,thelow-lying excited states(~4Σ~ ,~6Σ~ ,~8Σ~ )for three structures of PuOH molecule were optimized.The results showthat the ground state is X~6Σ~ of the linear Pu-O-H(C_(∞v)),its corresponding equilibrium geometry and dissociationenergy are R_(Pu-O)=0.20595 nm,R_(O-H)=0.09581 nm and —8.68 eV,respectively.At the same time,two other me-tastable structures [PuOH(C_s)and H-Pu-O(C_(∞v)] were found.The analytical potential energy function has alsobeen derived for whole range using the many-body expansion method.This potential energy function represents theconsiderable topographical features of PuOH molecule in detail,which is adequately accurate in the whole potentialsurface and can be used for the molecular reaction dynamics research.  相似文献   

17.
Silicon atoms react under single collision conditions with N2O to yield chemiluminescent emission corresponding to the SiO a3Σ+?X1Σ+ and b3Π?X1Σ+ intercombination systems and the A1Π?X1Σ+ band system. A most striking feature of the SiN2O reaction is the energy balance associated with the formation of SiO product molecules in the A1Π and b3Π states. A significant energy discrepancy ( = 10000 cm? = 1.24 eV) is found between the available energy to populate the highest energetically accessible excited-state quantum levels and the highest quantum level from which emission is observed. It is suggested that this discrepancy may result from the formation of vibrationally excited N2 in a concerted fast SiN2O reactive encounter. Emission from the SiO a3Σ+ (A1Π) and b3Π(A1Π, E1Σ0+) triplet-state manifold results primarily from intensity borrowing involving the indicated singlet states. Perturbation calculations indicate the magnitude of the mixing between the b3Π, A1Π and E1Σ0+ states ranges between 0.5 and 2%. On the basis of these calculations, the branching ratio (excited triplet)/(excited singlet) is found to be well in excess of 500. An approximate vibrational population distribution is deduced for those molecules formed in the b3Π state. The present studies are correlated with those of previous workers in order to provide an explanation for diverse relaxation effects as well as observed changes in the ratio of a3Σ+ to b3Π emission as a function of pressure and experimental environment. Some of these effects are attributable to a strong coupling between the a3Σ+ and b3Π state. Based on the current results, there appears to be little correlation between either (1) the branching ratio for excited state formation or (2) the total absolute cross section for excited-state formation and (3) the measured quantum yield for the SiN2O reaction. Implications for chemical laser development are considered.  相似文献   

18.
The electronic structure and the spectroscopic properties for low‐lying electronic states of the LiRb+ molecular ion, dissociating into Li (2s, 2p, 3s, 3p, 3d, 4s, and 4p) + Rb+ and Li+ + Rb (5s, 5p, 4d, 6s, 6p, 5d, and 7s), have been investigated using an ab initio approach based on non‐empirical pseudo potentials for the Li and Rb cores and parametrized l‐dependent polarization potential. We have determined the adiabatic potential energy curves and their spectroscopic constants for many electronic states of 2Σ+, 2Π, and 2Δ symmetries. A satisfying agreement, for the spectroscopic constants, has been obtained for the ground and the first excited states with the available theoretical works. Potential energy curves were presented, for the first time, for the higher excited states. In addition, we have localised and analysed the avoided crossings between electronic states of 2Σ+ and 2Π symmetries. Their existences can be related to the interaction between the potential energy curves and to the charge transfer process between the two ionic systems Li+Rb and LiRb+. Moreover, we have determined the transition dipole moments from X2Σ+ and 22Σ+ states to higher excited states of 2Σ+ and 2Π symmetries. For our best knowledge, no experimental data on the LiRb+ molecular ion is available. These theoretical data can help experimentalists to optimize photoassociative formation of ultracold LiRb+ molecular ion and their longevity in a trap or in an optical lattice. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

19.
The potential energy curves (PECs) of eight low‐lying electronic states (X1Σ+, a3Π, a′3Σ+, d3Δ, e3Σ?, A1Π, I1Σ?, and D1Δ) of the carbon monoxide molecule have been studied by an ab initio quantum chemical method. The calculations have been performed using the complete active space self‐consistent field method, which is followed by the valence internally contracted multireference configuration interaction (MRCI) approach in combination with the correlation‐consistent aug‐cc‐pV5Z basis set. The effects on the PECs by the core‐valence correlation and relativistic corrections are included. The way to consider the relativistic corrections is to use the third‐order Douglas–Kroll Hamiltonian approximation at the level of a cc‐pV5Z basis set. Core‐valence correlation corrections are performed using the cc‐pCVQZ basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are corrected for size‐extensivity errors by means of the Davidson modification (MRCI+Q). The spectroscopic parameters (De, Te, Re, ωe, ωexe, ωeye, Be, αe, and γe) of these electronic states are calculated using these PECs. The spectroscopic parameters are compared with those reported in the literature. Using the Breit–Pauli operator, the spin–orbit coupling effect on the spectroscopic parameters is discussed for the a3Π electronic state. With the PECs obtained by the MRCI+Q/aug‐cc‐pV5Z+CV+DK calculations, the complete vibrational states of each electronic state have been determined. The vibrational manifolds have been calculated for each vibrational state of each electronic state. The vibrational level G(ν), inertial rotation constant Bν, and centrifugal distortion constant Dν of the first 20 vibrational states when the rotational quantum number J equals zero are reported and compared with the experimental data. Comparison with the measurements demonstrates that the present spectroscopic parameters and molecular constants determined by the MRCI+Q/aug‐cc‐pV5Z+CV+DK calculations are both reliable and accurate. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Theoretical potential energy curves are computed for the X 2Σ+ and A 2Π states of CsO using a relativistic effective core potential and a large valence Gaussian basis set. Seventeen electrons are correlated by a CI (SD ) calculation from each HF reference. We find the X 2Σ+ state lower by 497 and 726 cm?1 at the HF and CI(SD) levels. Our calculated ωe of 312 cm?1 for the X 2Σ+ state agrees well with experimental values deduced from studies in matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号