首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inclusion of conductive particles is a convenient way for the enhancement of electrical and thermal conductivities of polymers. However, improvement of the mechanical properties of such composites has remained a challenge. In this work, maleated polyethylene is proposed as a novel matrix for the production of conductive metal–thermoplastic composites with enhanced mechanical properties. The effects of two conductive particles (iron and aluminum) on the morphological, mechanical, electrical, and thermal properties of maleated polyethylene were investigated. Morphological observations revealed that the matrix had excellent adhesion with both metal particles. Increase in particle concentration was shown to improve the tensile strength and modulus of the matrix significantly with iron being slightly more effective. Through‐plane electrical conductivity of maleated polyethylene was also substantially improved after adding iron particles, while percolation was observed at particle contents of around 20–30% vol. In the case of aluminum, no percolation was observed for particle contents of up to 50% vol., which was linked to the orientation of the particles in the in‐plane direction due to the squeezing flow. Inclusion of particles led to substantial increase (over 700%) in the thermal conductivities of both composites. The addition of high concentrations of metal particles to matrix led to the creation of two groups of materials: (i) composites with high electrical and thermal conductivities and (ii) composites with low electrical and high thermal conductivities. Such characteristics of the composites are expected to provide a unique opportunity for applications where a thermally conductive/electrically insulating material is desired. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In general, the high electrical conductivity (EC) comes into conflict with the good flexibility and high strength of carbon nanotube (CNT)/polyaniline (PANI) composites. In other words, a high CNT content will bring about a high EC but lead to a low flexibility and strength due to the CNT‐constrained matrix deformation and CNT aggregation. In this work, a highly conductive, flexible and strong CNT/PANI composite film prepared via a facile solvent‐evaporation method is readily obtained by a cold stretching. The cold stretching is conducted at room temperature for the CNT/PANI film. It is observed that the cold stretching process leads to an unexpectedly enhanced EC. The as‐obtained EC of 231 S/cm is much higher than that (2 – 50 S/cm) of the previously reported CNT/PANI composite films. Meanwhile, the strength is obviously improved over that of the pure PANI film and the good flexibility is maintained to a high degree by the introduction of a proper CNT content. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1575–1585  相似文献   

3.
Thermal transporting properties of electrically conductive polyaniline films were first investigated in wide range of temperatures above room temperature as organic thermoelectric materials. Thermal conductivities of various protonic acid-doped polyaniline films were measured by combination of a laser flash method and a differential scanning calorimeter in relation with electrical conductivity and a kind of dopant. The thermal conductivities thus measured are in the range of conventional organic polymers, indicating that the doped polyaniline films have extremely low thermal conductivities among electrically conductive materials, and have correlation with neither electrical conductivity, nor a kind of dopant. Consequently the polyaniline film, which shows very high electrical conductivity, has comparable thermoelectric figure-of-merit (ZT) with feasible inorganic thermoelectric materials such as iron silicide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Electrothermomechanical analysis (ETMA) is effective for studying electrically conductive adhesive joints. Post curing of an electrically conductive adhesive (silver particle filled epoxy) by heating at an elevated temperature significantly enhances the thermal and mechanical stability of the conductive adhesive joint. The contact electrical resistivity and thickness of a joint tend to decrease cycle to cycle upon thermal cycling between 30 and 50°C and upon compression (up to 0.55 MPa). The effects of compression and thermal cycling are significant in the joint without post curing, but is insignificant after post curing. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
In this paper, we fabricated electrically conductive adhesives using vinyl ester resin and micro silver flakes, and then cured the adhesives by heat without any catalysts or initiators. The curing temperature was above 200 °C, and the curing time about 30 min. Under these heat curing conditions, the double bonds in the adhesives reached a high conversion (α) around 98.88 % calculated from the Fourier transform infrared spectroscopy analysis. The curing kinetics of heat curing products was studied using Ozawa method and deduced by assuming a constant activation energy (E). The curing kinetic equation was obtained as dα/dt = e17.70(1 ? α)1.19 α 0.41e(?94.32)/RT) with E = 94.32 kJ mol?1. The heat curing followed the shrinking core model from the resin-particle system. The data calculated from the kinetic equation agreed well with the experimental data, showing that the Ozawa method could evaluate the curing kinetics effectively. Furthermore, a comprehensive and in-depth understanding of the curing kinetics of heat curing electrically conductive adhesives has been achieved with this Ozawa method.  相似文献   

6.
The mechanical and electrical properties of solution-processed [or gel-spun] blends of poly(3-octylthiophene) and ultrahigh molecular weight polyethylene are discussed. Tensile drawing at elevated temperatures of the phase-separated blends resulted in significant improvements of the mechanical properties, in comparison with those of the neat conducting polymer, with values of the Young's modulus reaching > 40 GPa and tensile strengths in excess of 2 GPa. Doping of the undrawn polyblend fibers with iodine vapor or FeCl3 resulted in materials of useful levels of electrical conductivity covering the full range of 10?15 to 10 S/cm. A distinct percolation threshold for electrical conductivity was not observed, even at poly(3-octylthiophene) concentrations as low as 0.5 w/w %; the electrical conductivity of the latter blend, after doping with iodine vapor, was 8 × 10?8 S/cm.  相似文献   

7.
8.
This work describes the preparation of polypyrrole and EPDM rubber blends, PPy/EPDM, by the sorption of pyrrole (vapor phase) in an EPDM matrix containing CuCl2. We investigated the effect of the oxidant particle-size on the sorption and polymerization equilibrium, electrical conductivity, and mechanical properties of the blends. Independently of the CuCl2 concentration and polymerization time, the polypyrrole weight fraction in the blend, Xppy, increases when the oxidant particle-size in changed from 150–250 μm to smaller than 106 μm. For blends containing 50 phr of CuCl2, obtained following 72 h of exposure to pyrrole, an increase in the Young's Modulus (from 2.2 ± 0.2 to 3.9 ± 0.6 MPa) and an increase in the electrical conductivity (from 10?9 to 10?7 S cm?1) was observed when the oxidant particle-size was decreased. Infrared spectroscopy, thermogravimetric analysis, scanning differential calorimetry, and scanning electron microscopy were used in sample characterization. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Thermal conductive and antistatic polyetherimide (PEI) nanocomposites were fabricated by encapsulating non‐destructive amido group functionalized multi‐walled carbon nanotubes (MWCNTs) into the PEI matrix. Briefly, nearly half of acyl chloride groups in poly (acryloyl chloride) reacted with sodium azide and formed acyl azide groups, which could conjunct with MWCNTs via non‐destruction nitrenes addition reaction. The remaining acyl chloride groups in poly (acryloyl chloride) hydrolyzed into carboxyl groups, therefore COOH‐rich MWCNTs (MWCNTs@azide polyacrylic acid) were synthesized without serious damage to the MWCNTs. Then, MWCNTs@azide polyacrylic acid were then reacted with p‐Phenylene diamine (PPD) and transformed to amido group functionalized MWCNTs (MWCNTs@PPD). MWCNTs@PPD could participate into the in situ polymerization of PEI matrix, where the conjunction between bisphenol A dianhydride and amido groups on MWCNTs@PPD guaranteed the strong covalent bonding at the PEI/MWCNTs interface, which directly avoided the aggregation of MWCNTs. Owing to the non‐destructive modification of MWCNTs and tight matrix/filler interface, the volume electric and thermal conductivity of as‐prepared nanocomposites was up to 6.4 × 10?8 S/cm (1.0 wt%, MWCNTs@PPD) and 0.43 W/(m · K) (4.0 wt%, MWCNTs@PPD), respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
橡胶由于其高弹性、良好的生物相容性、耐化学腐蚀及长期使用的稳定性等优点,在众多领域已有一百多年的应用历史。一般来说,在生胶硫化之前需要加入增强填料、润滑剂、偶联剂和促进剂等各类添加剂,以达到使用要求的性能。其中增强填料起到提高橡胶强度、提高橡胶耐磨耐热性、延长橡胶使用寿命的作用。相比于炭黑或者二氧化硅这些传统增强填料,新兴纳米材料石墨烯由于其优异的性能,只需极少量便可使橡胶的性能显著增强。然而,石墨烯片层之间的范德华力严重的阻碍了其在高分子机体内的分散,其在橡胶基体的分散性直接决定了石墨烯对于橡胶材料的增强效果。近年来,越来越多的研究开始关注通过在溶液中的湿法改性,包括物理或化学的方法来改性石墨烯,促进它与橡胶二者界面的相互作用,提高石墨烯在橡胶基体中的分散效果。本文总结了近几年湿法改性石墨烯在制备石墨烯/橡胶复合材料方面的研究进展。  相似文献   

11.
Electrically conductive thermoplastic vulcanizates(TPVs) filled by multi-walled carbon nanotubes(MWCNTs) are prepared by a simple one-step melt mixing process,based on linear low density polyethylene(LLDPE) and ultrafme full-vulcanized rubber particles(UFRP).An ideal morphology with controlled localization of MWCNTs in continuous LLDPE matrix and appropriate size of finely-dispersed UFRP can be achieved at the same time.The controlled localization of MWCNTs in the continuous phase facilitates the formation of conductive pathway,and thus the volume resistivity of the as-prepared LLDPE/UFRP/MWCNTs thermoplastic vulcanizates is significantly decreased.The results show that both the blend ratio of LLDPE/UFRP and the loading of MWCNTs have remarkable effect on the volume resistivity.Significantly, the electrically conductive TPVs exhibit good mechanical properties duo to the fine dispersion of UFRP in LLDPE.The added MWCNTs are capable of imparting reinforcement effects to thermoplastic vulcanizates with just a slight loss of stretchability and elasticity.  相似文献   

12.
The effect of sulfonation on polysulfone regarding its electrical properties is studied and discussed. In addition to the effect of percentage of sulfonation, the thickness of thin films and the ultraviolet (UV) treatment also were evaluated and reported. The results indicate that percentage of sulfonation is the most important effect, even over thickness. As the sulfonation percentage was increased, better electrical performance (fill factor and power conversion efficiency) was obtained because the sulfonate groups impart a kind of vacancy into the polymer structure, showing comparable energy level to that of conventional poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS).In addition, the UV treatment not only cleans the film's surface but also polarizes the polymeric's surface improving the polysulfone performance, which was 24% better, at least, respect to that obtained without UV treatment. The obtained results open the possibility to optimize sulfonated polysulfones that could be used in inverted hybrid perovskite solar cells.  相似文献   

13.
A novel cycloaliphatic triepoxide, 1,1‐bis(2′,3′‐epoxycyclohexyloxymethyl)‐3,4‐epoxycyclohexane ( II ), and its precursor, 1,1‐bis(2′‐cyclohexenyloxymethyl)‐3‐cyclohexene, were synthesized. Their chemical structures were confirmed with IR spectroscopy, elemental analysis, and 1H NMR spectroscopy. II was easily cured with hexahydro‐4‐methylphthalic anhydride with 1,3,5‐triethylhexahydro‐s‐triazine as a curing accelerator. The physical properties of the cured product were examined with thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. Compared with the commercial diepoxide ERL‐4221 under the same curing conditions, the cured product based on II showed a much higher glass‐transition temperature (198 °C), a higher crosslinking density (2.08 × 10?3 mol/cm3), and a lower coefficient of thermal expansion [6.2 × 105(/°C)]. II may become a promising candidate material for modern microelectronic packaging. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2799–2804, 2001  相似文献   

14.
李晓锋  于中振 《高分子科学》2017,35(11):1381-1390
To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers,graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of poly(p-phenylene terephthalamide)(PPTA) and followed by freeze-drying. Thermal annealing of the composite aerogels at 1300 ° C is adopted not only to restore the conductivity of the reduced graphene oxide component but also to convert the insulating PPTA organic fibers to conductive carbon fibers by the carbonization. The resultant graphene/carbon fiber aerogels(GCFAs) exhibit high electrical conductivities and enhanced compressive properties, which are highly efficient in improving both mechanical and electrical performances of epoxy composites. Compared to those of neat epoxy, the compressive modulus, compressive strength and energy absorption of the electrically conductive GCFA/epoxy composite are significantly increased by 60%, 59% and 131%, respectively.  相似文献   

15.
Successfully optimized calculations for the stability of SnAlO3 perovskite in its paramagnetic phase and various structural parameters have been figured out in this study. Structural stability and ductile character is reflected from the calculated elastic constants and mechanical properties. Moreover, the melting temperature of the present material has also been calculated. We have discussed in detail, the ground state electronic band structure and paramagnetic character. In addition, the Boltzmann's transport theory has been employed to obtain the Seebeck, electrical and thermal conductivity coefficients so as to manifest the thermoelectric response of the material. Remarkably, the observed high electrical conductivity in inclusion of metallicity and paramagnetic nature is a characteristic of perovskite type electrode materials. The above discussed material properties suggest the possible application of this compound as an efficient electrode material.  相似文献   

16.
To improve the dispersion of multi‐walled walled carbon nanotubes (MWCNTs) and investigate the effect of dispersant for MWCNTs functionalization on the dielectric, mechanical, and thermal properties of Polyvinylidene fluoride (PVDF) composites, two different dispersants (Chitosan and TritonX‐100) with different dispersion capability and dielectric properties were used to noncovalently functionalize MWCNTs and prepare PVDF composites via solution blending. Fourier transform infrared, X‐Ray diffraction, and Raman spectroscopy indicated that TritonX‐100 and Chitosan were noncovalent functionalized successfully on the surface of MWCNTs. With the functionalization of Chitosan and TritonX‐100, the dispersion of MWCNTs changed in different extent, which was investigated by dynamic light scattering and confocal laser scan microscopy. The dielectric, mechanical, and thermal properties of PVDF composites were also improved. Meanwhile, it was also found that the dielectric properties of PVDF composites are closely related to the dielectric properties of dispersant. High dielectric constant of dispersant contributes to the grant dielectric constant of PVDF composites. The mechanical and thermal properties of MWCNTs/PVDF composites largely depend on the dispersion of MWCNTs in PVDF, interfacial interactions and the residual solvent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Mechanical, thermal, and electrical properties of graphite/PMMA composites have been evaluated as functions of particle size and dispersion of the graphitic nanofiller components via the use of three different graphitic nanofillers: “as received graphite” (ARG), “expanded graphite,” (EG) and “graphite nanoplatelets” (GNPs) EG, a graphitic materials with much lower density than ARG, was prepared from ARG flakes via an acid intercalation and thermal expansion. Subsequent sonication of EG in a liquid yielded GNPs as thin stacks of graphitic platelets with thicknesses of ~10 nm. Solution‐based processing was used to prepare PMMA composites with these three fillers. Dynamic mechanical analysis, thermal analysis, and electrical impedance measurements were carried out on the resulting composites, demonstrating that reduced particle size, high surface area, and increased surface roughness can significantly alter the graphite/polymer interface and enhance the mechanical, thermal, and electrical properties of the polymer matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2097–2112, 2007  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号