首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《先进技术聚合物》2018,29(2):921-933
This study described approaches for improving the film ductility of colorless cycloaliphatic polyimides (PIs). An unexpected toughening effect was observed when a PI derived from pyromellitic dianhydride (PMDA) and 4,4′‐methylenebis(cyclohexylamine) was modified by copolymerization with a low isophoronediamine (IPDA) content of 5 to 30 mol%, despite there being no film‐forming ability in the homo PMDA/IPDA system. For example, at an IPDA content of 20 mol%, the copolymer showed significantly improved film toughness (maximum elongation at break, εb max = 57%), excellent optical transparency (light transmittance at 400 nm, T400 = 83.7%), and a high glass transition temperature (Tg = 317°C). This toughening effect can be interpreted on the basis of the concept of chain slippage. In this study, the PIs derived from bicyclo[2.2.2]octane‐2,3,5,6‐tetracarboxylic dianhydride (H‐BTA) with various diamines were also systematically investigated to evaluate the potential of H‐BTA‐derived systems. The combinations of H‐BTA with ether‐containing diamines led to highly tough PI films (εb max > 100%) with very high Tgs, strongly contrasting with the results of an earlier study. The observed excellent properties are related to the steric structure of H‐BTA. Our interest also extended to the solution processability. A copolyimide derived from H‐BTA with a sulfone‐containing diamine and an ether‐containing diamine achieved a very high optical transparency (T400 = 86.8%), a very high Tg (313°C), and good ductility (εb max = 51%) while maintaining solution processability. Thus, these approaches enabled us to dramatically improve the ductility of cycloaliphatic PI films that have, to date, been considered brittle.  相似文献   

2.
Some polyimide films based on cyclobutane‐1,2,3,4‐tetracarboxylic dianhydride (CBDA) and aromatic diamines were synthesized to investigate their temperature resistance and percent transmission of light. The preparations of CBDA were investigated; they produced almost 10 times the yield of CBDA in comparison to yields obtained by previous methods. The configuration of CBDA was determined by X‐ray analysis to be cistranscis. The polymer films showed excellent thermal resistance and were transparent and colorless, desirable characteristics for practical applications in the field of polymer engineering. However, the polymer obtained from a pyromellitic dianhydride instead of from CBDA was deep yellow and not desirable for high‐qualified display materials such as liquid‐crystal displays. The percent transmission of the polymers obtained from CBDA and aromatic diamines ranged from 81.5 to 85.8%, whereas the deep‐yellow polymers showed low percent transmissions ranging from 48 to 63.9%. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 108–116, 2000  相似文献   

3.
Two novel bio‐based diamines are synthesized through introduction of renewable 2,5‐furandicarboxylic acid (2,5‐FDCA), and the corresponding aromatic polyimides (PIs) are then prepared by these diamines with commercially available aromatic dianhydrides via two‐step polycondensation. The partially bio‐based PIs possess high glass transition temperatures (Tgs) in the range from 266 to 364 °C, high thermal stability of 5% weight loss temperatures (T5%s) over 420 °C in nitrogen and outstanding mechanical properties with tensile strengths of 79–138 MPa, tensile moduli of 2.5–5.4 GPa, and elongations at break of 3.0–12.3%. Some colorless PI films (PI‐1‐b and PI‐1‐c) with the transmittances at 450 nm over 85% are prepared. The overall properties of 2,5‐FDCA‐based PIs are comparable with petroleum‐based PI derived from isophthalic acid, displaying the potential for development of innovative bio‐based materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1058–1066  相似文献   

4.
Conventional synthesis of polyimides includes high‐temperature (160–350 °C) imidization of poly(amic acid)s. In the present work, imidization has been carried out at much lower temperatures (40–160 °C). 1,2,4,5,‐cyclohexanetetracarboxylic dianhydride (HPMDA) or pyromellitic dianhydride (PMDA) was polymerized with an aromatic diamine, 4,4′‐diaminodiphenylmethane (DDPM), to give poly(amic acid)s, which were then imidized chemically. Imidization was more than 90% complete even at the very low imidization temperature of 40 °C. It was found that the imidization occurs in two steps: an initial rapid cyclization and a subsequent slower cyclization. The activation energy for the rapid process was determined to be 4.3 kJ/mol, and that of the slower process, 4.8 kJ/mol. As the imidization temperature decreases, the transmittance of the resulting polyimides tends to gradually increase, the cutoff wavelength decreases and the color becomes pale. A partially aliphatic polyimide based on HPMDA and DDPM prepared at 40 °C yielded thin films that were highly transparent and colorless, and had good flexibility, solubility and thermal stability. The polyimide films prepared in this study may be good candidates for flexible, transparent plastic substrates in the display industry. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1593–1602  相似文献   

5.
A new diamine monomer, 4,4″‐bis(aminophenoxy)‐3,3″‐trifluoromethyl terphenyl (ATFT) was synthesized that led to a number of novel fluorinated polyimides by solution as well as thermal imidization routes when reacted with different commercially available dianhydrides like pyromellatic dianhydride (PMDA), benzophenone tetracarboxylic acid dianhydride (BTDA), or 2,2‐bis(3,4‐dicarboxyphenyl) hexafluoropropane (6FDA). The polyimides ATFT/BTDA and ATFT/6FDA derived from both routes were soluble in several organic solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide, and dimethyl sulfoxide. The polyimide ATFT/PMDA was only soluble in N‐methylpyrollidone. The polyimide films had low water absorption of 0.3–0.7%, low dielectric constants of 2.72–3.3 at 1 Hz, refractive indices of 1.594–1.647 at 589.3 nm, and optical transparency >85%. These polyimides showed very high thermal stability with decomposition temperatures (5% weight loss) up to 532 °C in air and good isothermal stability; only 7% weight loss occurred at 400 °C after 7 h, and less than 0.6% weight loss was observed at 315 °C for 5 h. Transparent thin films of these polyimides exhibited tensile strengths up to 112 MPa, a modulus of elasticity up to 3.05 GPa, and elongation at break up to 21% depending on the repeating unit structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1016–1027, 2002  相似文献   

6.
New sulfur‐containing aromatic diamines with methyl groups at the ortho position of amino groups have been developed to prepare highly refractive and transparent aromatic polyimides (PIs) in the visible region. All aromatic PIs derived from 4,4′‐thiobis[2″‐methyl‐4″‐(p‐phenylenesulfanyl)aniline ( 2 ), 4,4′‐thiobis[2,″6″‐dimethyl‐4″‐(p‐phenylenesulfanyl)aniline ( 5 ), and aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride ( 6 ) were prepared via a two‐step polycondensation. All PIs showed good thermal properties, such as 10% weight loss temperature in the range of 497–500 °C and glass transition temperatures above 196 °C. In addition, the PIs showed good optical properties, such as optical transparency above 75% at 450 nm with a 10‐μm film thickness, high refractive indices ranging from 1.7135 to 1.7301, and small in‐plane/out‐of‐plane birefringences between 0.0066 and 0.0076. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 656–662, 2010  相似文献   

7.
Novel co‐polymerization polyimide (PI) fibers based on 4,4′‐oxydianiline (ODA)‐pyromellitic dianhydride (PMDA) were prepared. 2‐(4‐Aminophenyl)‐5‐aminobenzimidazole (PABZ) containing the N? H group was introduced into the structure of the fibers as the proton donor. The results of Fourier transform infrared (FTIR) and dynamic mechanical analysis (DMA) showed that hydrogen bonding occured between the N? H group and chains, which strongly enhanced interchain interaction. This hydrogen bonding interaction increased the tensile strength and initial modulus of the PI fibers up to 2.5 times and 26 times, respectively, compared to those of homo‐PI PMDA‐ODA fibers with no hydrogen‐bonding interaction because of the absence of proton donors after the imidization process. In the mean time, glass transition temperature (Tg) of the modified PI fibers was found to be 410–440°C, which was higher than that of the homo‐PI PMDA‐ODA fibers. From the result, a novel access to molecular design and manufacture of high performance PI fibers with good properties could be provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Three new isomeric diamines containing three, oxy‐linked benzonitriles (3BCN), one of which is asymmetric (meta, para, or m, p), are synthesized in a 3‐step sequence. Polycondensation of these diamines and four common dianhydrides (6FDA, OPDA, BTDA, and PMDA) in N,N‐dimethylacetamide via poly(amic acid) precursors and thermal curing at temperatures up to 300 °C lead to three series of tough, creasable polyimide (PI) films (tensile moduli = 1.63 ? 2.86 GPa). Among these PIs, two PMDA‐based PIs possess relatively high crystallinity and two OPDA‐based PIs, low crystallinity, whereas all 6FDA‐ and BTDA‐based PIs, and m,m‐3BCN‐OPDA‐PI are amorphous, readily soluble in common polar aprotic solvents. Thermally stable and having high Tg (216 ? 341 °C), these PIs lose 5% weight around 493–503 °C in air and 463–492 °C in nitrogen. Dielectric properties have been evaluated by broadband dielectric spectroscopy (BDS) and electric displacement‐electric‐field (D‐E) loop measurements. D‐E loop results show an increase in high temperature permittivity (at 190 °C/1 kHz) from 2.9 (for parent PI CP2 with no nitrile group) to as high as 4.9 for these PIs, while keeping their dielectric loss relatively low. Thus, an increase in dipole moment density by the presence of three neighboring CN per repeat unit can increase the overall permittivity, which could be further enhanced by sub‐Tg mobility of para‐phenylene linkages (BDS results). Published 2014. J. Polym. Sci., Part A: Polym. Chem. 2014 J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 422–436  相似文献   

9.
To prepare novel polyimides with enhanced thermal stability and high solubility in common organic solvents, diamine monomers, 4‐aryl‐2,6 bis‐(4‐amino phenyl)pyridine, were introduced. The diamines were reacted with three different conventional aromatic dianhydrides including pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and hexafluoroisopropylidene‐2,2‐bis(phthalic‐dianhydride) (6FDA) in dimethylacetamide solvent to obtain the corresponding polyimides via the polyamic acid precursors and chemical imidization. The monomers and polymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, mass spectroscopy, and elemental analysis; and the best condition of polymerization and imidization were obtained via the study of model compound. The polyimides showed little or no weight loss by thermogravimetric analysis up to 500 °C, and those derived from 6FDA exhibited good solubility in various polar solvents. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3826–3831, 2001  相似文献   

10.
The mechanism of negative coefficient of thermal expansion (CTE) generation for non-stretched polyimide (PI) films is proposed in this work. Negative CTE behavior was observed in some miscible binary blend films composed of a major fraction of a rod-like semi-crystalline PI derived from pyromellitic dianhydride (PMDA) with p-phenylenediamine (PDA) and flexible PIs based on 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA) whereas homo PMDA/PDA PI film shows a considerably low but a positive CTE value. The results suggest that the negative CTE generation is related to not only a considerably high extent of in-plane orientation of the PMDA/PDA chains but also to the crystallinity of the blends. The present work revealed that some other PIs, a poly(ester imide), and a polybenzoxazole system also display negative CTE and these systems also possess extremely high extents of in-plane chain orientation without exception. In addition to CTE, the morphologies were monitored as a function of imidization temperature for two PI systems, PMDA/2,2′-bis(trifluoromethyl)benzidine and PMDA/m-tolidine by wide-angle X-ray diffraction, FT-IR spectroscopy, birefringence, and film density measurements. The results suggested that the negative CTE phenomenon occurs when PI films possess very high extents of in-plane orientation and a less crystalline morphology simultaneously, thereby significant thermal expansion can be allowed to the thickness direction.  相似文献   

11.
In this work, thermal solution imidization kinetics of two high performance polyimides, prepared from the polycondensation of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) with 4,4′-bis(3-aminophenoxy)diphenylsulfone (DAPDS) were investigated using nonaqueous titration technique with tetramethylammonium hydroxide. Most of the kinetic investigations, found in the literature, are based on the aromatic p-diamines.1,2 In the present work, attention was focused on imidization kinetics with m-substituted aromatic diamines having electron donating ( O ) and electron withdrawing ( SO2 ) groups in the same molecule. Kinetic parameters, namely the rate constants, activation energies, entropies and enthalpies of imidization reactions were determined and compared with the literature values. It is reported in literature3 that electron affinities of dianhydrides and ionization potentials of diamines, have strong influence on the reaction rate and activation energies of imidization. Activation energy (Ea) values were found to be 66 and 57 kJ/mol for DAPDS/PMDA and DAPDS/BTDA respectively, and order of reaction was found to be second order. Polyimides DAPDS/PMDA and DAPDS/BTDA, subjected to kinetic investigation, showed glass transition temperatures of 267°C and 241°C, both were found to be thermally stable up to 500°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2981–2990, 1997  相似文献   

12.
基于苯醚型含氟二胺的聚酰亚胺膜材料的合成与表征   总被引:5,自引:0,他引:5  
4,4′-二羟基二苯醚和2-氯-5-硝基三氟甲苯经Williamson反应得到4,4′-双(4-硝基-2-三氟甲基苯氧基)二苯醚;在Pd/C-水合肼还原作用下得到4,4′-双(4-氨基-2-三氟甲基苯氧基)二苯醚(p-6FAPE).采用3种苯醚型含氟二胺1,4-双(3-氨基-5-三氟甲基苯氧基)苯、1,4-双(4-氨基-2-三氟甲基苯氧基)苯和p-6FAPE分别与3,3′,4,4′-二苯醚四酸二酐(ODPA)和均苯四甲酸二酐通过两步法制备出6种含氟聚酰亚胺(PI),对其溶解性、热性能和光学性能进行研究.这些PI具有较好的溶解性,且具有良好的热稳定性;ODPA基PI在可见光波长范围具有优良的透明性,450 nm处的透光率超过80%.  相似文献   

13.
Highly refractive and transparent polyimides (PIs) based on fluorene‐bridged and sulfur‐containing monomers have been developed. An aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), was polymerized with several fluorene‐containing diamines, including commercially available 9,9′‐bis(p‐aminophenyl)fluorene (APF), 9,9′‐bis[4‐(p‐aminophenoxy)phenyl]fluorene (OAPF), and newly synthesized 9,9′‐bis[4‐(p‐aminophenyl)sulfanylphenyl]fluorene (ASPF) to afford series A PIs. Meanwhile, series B PIs were obtained from a new dianhydride, 4,4′‐[(9H‐fluorene‐9‐ylidene)bis(p‐phenylsulfanyl)]diphthalic anhydride (FPSP) and two aromatic diamines, ASPF and 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] (3SDA) via a two‐step polycondensation procedure. The PIs exhibit good thermal stabilities, such as relatively high glass transition temperatures in the range of 220–270 °C and high initial thermal decomposition temperatures (T10%) exceeding 490 °C. The 9,9′‐disubstituted fluorene moieties endow the PI films with good optical transparency. The optical transmittances of the PI films at 450 nm are all higher than 80% for the thickness of about 10 μm. Furthermore, the highly aromatic fluorene moiety and flexible thioether linkages in the molecular chains of the PIs provide them with high refractive indices of 1.6951–1.7258 and small birefringence of 0.0056–0.0070. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1510–1520, 2008  相似文献   

14.
Photoconduction mechanism of a polyimide with an alicyclic diamine, PI(PMDA/DCHM), prepared from pyromellitic dianhydride (PMDA) and 4,4′-diaminodicyclohexylmethane (DCHM) was investigated. Its UV absorption spectra, fluorescence spectra, photoconductivity, and annealing effects on the photocurrent generation were measured and compared to those of CPD, N,N′-dicyclohexylpyromellitic diimide, and PI(PMDA/DMDHM) prepared from PMDA and 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane (DMDHM). Photoconductivity of PI(PMDA/DCHM) depends upon the degree of molecular packing between polymer backbones. PI(PMDA/DMDHM) has no photoconductivity, probably due to a barrier to their intermolecular packing by the existence of two methyl substituents. Photoconductivity of PI(PMDA/DCHM) would be the result of the weak intermolecular interaction formed by mixed layer packing arrangement between pyromellitic moiety of one polymer backbone and N-cyclohexyl ring of another one in the ground state. Radiation absorption of this weak intermolecular interaction immediately forms a charge–transfer complex in the excited state and produces radical cation and anion charge carriers, which lead to the photoconductivity in the bulk polyimide film of PI(PMDA/DCHM). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1433–1442, 1998  相似文献   

15.
A novel preparation approach for high‐performance polyimide gels that are swollen or have a jungle‐gym‐type structure is proposed. A new rigid and symmetric trifunctional amine, 1,3,5‐tris(4‐aminophenyl)benzene (TAPB), was synthesized as a crosslinker. Three different kinds of amic acid oligomers derived from pyromellitic dianhydride (PMDA), 4,4′‐oxydiphthalic anhydride (ODPA), p‐phenylenediamine (PDA), and 4,4′‐oxydianiline (ODA) were end‐crosslinked with TAPB at a high temperature to make polyimide networks with different structures. Transparent polyimide gels were obtained from the ODPA–ODA/TAPB series with high compression moduli of about 1 MPa at their equilibrium swollen states in N‐methylpyrrolidone. Microscopic phase separation occurred during the gelation–imidization process when polyimide networks were generated from PMDA–PDA/TAPB and PMDA–ODA/TAPB. After these opaque polyimide networks were dried, a jungle‐gym‐like structure was obtained for the PMDA–PDA/TAPB and PMDA–ODA/TAPB series; that is, there was a high void content inside the networks (up to 70%) and little volume shrinkage. These polyimide networks did not expand but absorbed the solvent and showed moduli as high as those of solids. Therefore, using the highly rigid crosslinker TAPB combined with the flexible monomers ODPA and ODA and the rigid monomers PMDA and PDA, we prepared swollen, high‐performance polyimide gels and jungle‐gym‐type polyimide networks, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2501–2512, 2002  相似文献   

16.
The sorption of compressed carbon dioxide and methane in a series of all‐aromatic poly(etherimide) (PEI) thin films is presented. The polymer films are derived from the reactions between an arylether diamine (P1) and four different dianhydrides [3,3′,4,4′‐oxydiphthalic dianhydride (ODPA), 3,3′,4,4′ biphenyltetra‐carboxylic dianhydride (BPDA), 3,3′,4,4′‐benzo‐phenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA)] that have been selected to systematically change the flexibility of the polymer backbone, the segmental mobility, and the nonequilibrium excess free volume (EFV) of the polymer. The EFV, gas sorption capacities, and sorption‐ and temperature‐induced dynamic changes in film thickness and refractive index have been investigated by spectroscopic ellipsometry. The sorption capacity depends to a great extent on the PEI backbone composition. PMDA‐P1 shows the highest carbon dioxide sorption, combined with the lowest sorption selectivity because of the predominant sorption of methane in the EFV. For ODPA‐P1, the highest sorption selectivity is obtained, while it shows little long‐term relaxations at carbon dioxide pressures up to 25 bar. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 986–993  相似文献   

17.
A sulfonated dianhydride monomer, 6,6′‐disulfonic‐4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (SBTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (BTDA), using fuming sulfuric acid as the sulfonating reagent. A series of sulfonated homopolyimides were prepared from SBTDA and various common nonsulfonated diamines. The resulting polymer electrolytes, which contain ion conductivity sites on the deactivated positions of the aryl backbone rings, displayed high proton conductivities of 0.25–0.31 S cm?1 at 80 °C. The oxidative stability test indicated that the attachment of the ? SO3H groups onto the dianhydride units did not deteriorate the oxidative stability of the SPI membranes. The better membranes were achieved by the copolymerization of nonsulfonated diamine, SBTDA, and BTDA. Copolymer membrane synthesized from hexane‐1,6‐diamine, SBTDA, and BTDA displayed excellent water stability of more than 1000 h at 90 °C, while its proton conductivity was still at a high level (comparable to that of Nafion 117). Furthermore, the novel block copolymer ( II‐b ) displayed higher proton conductivity compared with the random one ( II‐r ) obviously, probably due to the slightly higher water uptake and better microphase separated morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2820–2832, 2008  相似文献   

18.
A series of hyperbranched polyimides (HBPIs) were synthesized by reacting a triamine monomer N ,N ′,N ″‐tris(4‐methoxyphenyl)‐N ,N ′,N ″‐tris(4‐phenylamino)?1,3,5‐benzenetriamine with various dianhydrides such as oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA). The hyperbranched polyimide (6FHBPI) using 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) as dianhydride monomer was also added into the discussion. All the hyperbranched polyimides exhibited excellent organo‐solubility and high thermal stability. Memory devices with a sandwiched structure of indium tin oxide (ITO)/HBPI/Al were constructed by using these HBPIs as the active layers. All these HBPIs based memory devices exhibited favorable memory performances, with switching voltages between ?1.3 V and ?2.5 V, ON/OFF current ratios up to 107 and retention times long to 104 s. Tunable memory characteristics from electrical insulator to volatile memory, and then to nonvolatile memory were obtained by adjusting the electron acceptors of these HBPIs. Molecular simulation results suggested that the electron affinity and the dipole moment of these HBPIs were responsible for the conversion of the memory characteristics. With the electron affinity and dipole moment of these HBPIs increasing, the memory characteristics turned from volatile to nonvolatile. The present study suggested that tunable memory performance could be achieved through adjusting the acceptor moieties of the hyperbranched polyimides. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2281–2288  相似文献   

19.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Aiming to develop soluble and colorless polyimides, two novel diamines, 2,5‐bis(2‐trifluoromethyl‐4‐amino‐phenoxy)‐1,4:3,6‐dianhydrosorbitol (2a) and 2,5‐bis(2‐methyl‐4‐amino‐phenoxy)‐1,4:3,6‐dianhydrosorbitol (2b), were designed and synthesized by the reduction of corresponding dinitro monomer which was obtained via solvent‐free melt heating method. Polyimides (PI–(1–5)) containing 1,4:3,6‐dianhydro‐d ‐glucidol fragments were prepared from 2a and five kinds of common dianhydrides and PI–6 was synthesized from 2b and 4,4′‐(hexafluoroisopropylidene)‐diphthalic anhydride (6FDA) via a two‐step thermal imidization. All the polyimides were readily soluble in common polar solvents and could afford flexible, tough, and transparent films with transparency as high as 87% at 450 nm. Meanwhile, PI–(1–6) exhibited unexpectedly low dielectric constants of 2.02–2.52 at 1 MHz. In addition, analogs PI–7 derived from 2,5‐bis(4‐amino‐phenoxy)‐1,4:3,6‐dianhydrosorbitol (2c) and 6FDA and PI–8 derived from 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl (2d) and 6FDA were also obtained via a two‐step thermal imidization for comparision with PI–(1–6) on aspects of thermal, mechnical, optical, electrical, and morphological properties. The structure–property relationships of PI–(1–8) were discussed in detail. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3253–3265  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号