首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Polyurethane/polyaniline (PU/PANI) and polyurethane‐poly(methyl methacrylate)/polyaniline (PU‐PMMA/PANI) conductive core‐shell particles were synthesized by a two‐stage polymerization process. The first stage was to produce a core of PU or PU‐PMMA via miniemulsion polymerization using sodium dodecyl sulfate (SDS) as the surfactant. The second stage was to synthesize the shell of polyaniline over the surface of core particles. Hydrogen chloride (HCl) and dodecyl benzenesulfonic acid (DBSA) were used as the dopant agents. Ammonium persulfate (APS) was used as the oxidant for the polymerization of ANI. Different concentrations of HCl, DBSA, and SDS would cause different conformations of PANI chains and thus different morphologies of PANI particles. UV–visible spectra revealed that the polaron band was blue‐shifted because of the more coiled conformation of PANI chains by increasing the concentration of DBSA. Besides, with a high concentration of DBSA, both spherical‐ and rod‐shape PANI particles were observed by transmission electron microscope, and the coverage of PANI particles onto the core surfaces was improved. The key point of formation of rod‐type PANI particles was that DBSA was served with a high concentration accompanied with the existence of HCl or SDS. The better coverage of PANI particles over the core surfaces by charging higher DBSA concentrations resulted in a higher conductivity of hybrid particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3902–3911, 2007  相似文献   

2.
A facile method for the synthesis of polyaniline–polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl‐doped polyaniline nanofibers exhibit a storage capacity of 0.46 wt%, whereas the polyaniline–polypyrrole composites could store 0.91 wt% of hydrogen gas. In addition, the effect of the dopant type, counteranion size, and the doping with palladium nanoparticles on the storage properties are also investigated.

  相似文献   


3.
A facile and versatile solution‐based approach was developed to prepare semiconductor metal oxide nanobelt‐conducting organic polymer core‐shell nanocomposites. Well‐defined nanobelts of several types of oxide nanobelts were combined with conducting polymer [polypyrrole (PPy) and polyaniline (PANi)] via in situ polymerization in aqueous solution to obtain a new type of inorganic–organic composite nanostructure. Samples were characterized by using X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, electron energy loss spectra, high‐resolution transmission electron microscopy, and ultraviolet–visible techniques. Electron energy loss spectra revealed the existence of C?C and C? N bonds in coating layers to prove the encapsulation of PPy or PANi. The red‐shift of absorption band at high‐energy was observed for PPy‐encapsulated composites via ultraviolet–visible spectroscopy, and significant absorption band shifts were also encountered to PANi‐encapsulated composites, which suggest possibilities of band‐gap tuning of such metal oxide‐conducting polymer composites to be applied especially in solar cell devices. However, the sacrifice of nanobelts‐core led to hollow structures of PPy and PANi, which expands the synthetic strategies to prepare conducting polymer nanotubes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2892–2900, 2005  相似文献   

4.
An easy and novel approach to the synthesis of functionalized nanostructured polymeric particles is reported. The surfactant‐free emulsion polymerization of methyl methacrylate in the presence of the crosslinking reagent 2‐ethyl‐2‐(hydroxy methyl)‐1,3‐propanediol trimethacrylate was used to in situ crosslink colloid micelles to produce stable, crosslinked polymeric particles (diameter size ~ 100–300 nm). A functionalized methacrylate monomer, 2‐methacryloxyethyl‐2′‐bromoisobutyrate, containing a dormant atom transfer radical polymerization (ATRP) living free‐radical initiator, which is termed an inimer (initiator/monomer), was added to the solution during the polymerization to functionalize the surface of the particles with ATRP initiator groups. The surface‐initiated ATRP of different monomers was then carried out to produce core–shell‐type polymeric nanostructures. This versatile technique can be easily employed for the design of a wide variety of polymeric shells surrounding a crosslinked core while keeping good control over the sizes of the nanostructures. The particles were characterized with scanning electron microscopy, transmission electron microscopy, optical microscopy, dynamic light scattering, and Raman spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1575–1584, 2007  相似文献   

5.
Polyaniline nanofibers doped with citric acid was prepared by a novel surfactant‐assisted dilute polymerization technique. It was possible to synthesize polyaniline nanofibers without using any organic solvent by easier pathway. Polyaniline salt was characterized by conductivity, FTIR, and X‐ray diffraction studies. The specific capacitance behavior of the polyaniline nanofibers was characterized using cyclic voltammetry which exhibits highest specific capacitance of 298 F g?1. The morphology of the obtained nanofibers was characterized by SEM studies. So, these kinds of specific properties of polyaniline nanofibers could be beneficial to the development of energy storage devices. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Summary: Electrically conducting polypyrrole‐poly(ethylene oxide) (PPy‐PEO) composite nanofibers are fabricated via a two‐step process. First, FeCl3‐containing PEO nanofibers are produced by electrospinning. Second, the PEO‐FeCl3 electrospun fibers are exposed to pyrrole vapor for the synthesis of polypyrrole. The vapor phase polymerization occurs through the diffusion of pyrrole monomer into the nanofibers. The collected non‐woven fiber mat is composed of 96 ± 30 nm diameter PPy‐PEO nanofibers. FT‐IR, XPS, and conductivity measurements confirm polypyrrole synthesis in the nanofiber.

An SEM image of the PPy‐PEO composite nanofibers. The scale bar in the image is 500 nm.  相似文献   


7.
In this work, electrically conductive polyaniline (PAni) doped with camphorsulfonic acid (CPSA) is blended with poly(L-lactide-co-epsilon-caprolactone) (PLCL), and then electrospun to prepare uniform nanofibers. The CPSA-PAni/PLCL nanofibers show a smooth fiber structure without coarse lumps or beads and consistent fiber diameters (which range from 100 to 700 nm) even with an increase in the amount of CPSA-PAni (from 0 to 30 wt.-%). However, the elongation at break decreases from 391.54 +/- 9.20% to 207.85 +/- 6.74% when 30% of CPSA-PAni is incorporated. Analysis of the surface of the nanofibers demonstrates the presence of homogeneously blended CPSA-PAni. Most importantly, a four-point probe analysis reveals that electrical properties are maintained in the nanofibers where the conductivity is significantly increased from 0.0015 to 0.0138 S x cm(-1) when the nanofibers are prepared with 30% CPSA-PAni. The cell adhesion tests using human dermal fibroblasts, NIH-3T3 fibroblasts, and C2C12 myoblasts demonstrate significantly higher adhesion on the CPSA-PAni/PLCL nanofibers than pure PLCL nanofibers. In addition, the growth of NIH-3T3 fibroblasts is enhanced under the stimulation of various direct current flows. The CPSA-PAni/PLCL nanofibers with electrically conductive properties may potentially be used as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications.  相似文献   

8.
Core‐shell silver (Ag)–polyaniline (PAni) nanocomposites have been synthesized by the in‐situ gamma radiation‐induced chemical polymerization method. Aqueous solution of aniline, a free‐radical oxidant, and/or silver metal salt were irradiated by γ‐rays. Reduction of the silver salt in aqueous aniline leads to the formation of silver nanoparticles which in turn catalyze oxidation of aniline to polyaniline. The resultant Ag‐PAni nanocomposites were characterized by using different spectroscopy analyses like X‐ray photoelectron, UV–visible, and infrared spectroscopy. The optical absorption bands revealed that the bands at about 400 nm are due to the presence of nanosilver and the blue‐shifted peak at ~ 555 nm is due to the presence of metallic silver within the PAni matrix. X‐ray diffraction pattern clearly indicates the broad amorphous polymer and the sharp metal peaks. Scanning electron microscopy and transmission electron microscopy of the nanocomposite showed a uniform size distribution with spherical and granular morphology. Thermogravimetric analysis revealed that the composites have a higher degradation temperature than polyaniline alone. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5741–5747, 2007  相似文献   

9.
Novel polyesterurethane/poly(ethylene glycol) dimethacrylate (PEGDMA) interpenetrating networks (IPNs) with good shape‐memory properties were synthesized using solvent casting method. The star‐shaped oligo[(rac‐lactide)‐co‐glycolide] was coupled with isophorone diisocyanate to form a polyesterurethane network (PULG), and PEGDMA was photopolymerized to form another polyetheracrylate network. IPNs were transparent and gel content exceeded 92%. The values of strain fixity rate and strain recovery rate were above 93%. PULG and PEGDMA networks in IPNs were amorphous and did not show any characteristic diffraction peaks in X‐ray diffraction spectra. Only one glass transition temperature (Tg) of the IPNs between Tg of PEGDMA and PULG was observed, which was proportional to PEGDMA content. PULG and PEGDMA networks were miscible when PEGDMA content was below 50 wt %. The hydrophilicity, transition temperatures, and mechanical properties of IPNs could be conveniently adjusted through variation of network compositions to match the promising potential clinical or medical applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 768–775, 2007  相似文献   

10.
Since their discovery, electrically conductive polymers have gained immense interest both in the fields of basic and applied research. Despite their vast potential in the fabrication of efficient, flexible, and low‐cost electronic and optoelectronic devices, they are often difficult to process by wet‐chemical methods due to their very low to poor solubility in organic solvents. The use of vapor‐based synthetic routes, in which conductive polymers can be synthesized and deposited as a thin film directly on a substrate from the vapor phase, provides many unique advantages. This article discusses oxidative vapor deposition processes, primarily vapor phase polymerization and oxidative chemical vapor deposition, of conjugated polymers and their applications. The mild operating conditions (near room temperature processing) allow conformal and functional coatings of conjugated polymers on delicate substrates. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
The suitability of various peroxide initiators for a radical polymerization‐based self‐healing system is evaluated. The initiators are compared using previously established criteria in the design of ring opening metathesis polymerization‐based self‐healing systems. Benzoyl peroxide (BPO) emerges as the best performing initiator across the range of evaluation criteria. Epoxy vinyl ester resin samples prepared with microcapsules containing BPO exhibited upwards of 80% healing efficiency in preliminary tests in which a mixture of acrylic monomers and tertiary amine activator was injected into the crack plane of the sample after the initial fracture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2698–2708, 2010  相似文献   

12.
Electrically conducting wires play a critical role in the advancement of modern electronics and in particular are an important key to the development of next‐generation wearable microelectronics. However, the thin conducting wires can easily break during use, and the whole device fails to function as a result. Herein, a new family of high‐performance conducting wires that can self‐heal after breaking has been developed by wrapping sheets of aligned carbon nanotubes around polymer fibers. The aligned carbon nanotubes offer an effective strategy for the self‐healing of the electric conductivity, whereas the polymer fiber recovers its mechanical strength. A self‐healable wire‐shaped supercapacitor fabricated from a wire electrode of this type maintained a high capacitance after breaking and self‐healing.  相似文献   

13.
The synthesis of high conductivity poly(3,4‐ethylenedioxythiophene) (PEDOT) films using vacuum vapour phase polymerisation is reported. Water vapour is introduced into the chamber and results suggest that it acts as a proton scavenger during polymerisation. Process optimisation leads to PEDOT films that have high conductivity and a blue‐black appearance. Poor quality films have lower conductivity and a characteristic greenish colour. UV‐vis‐NIR spectra show that poor PEDOT films are characterised by higher absorption in the UV‐vis region and an absorption plateau in the NIR region, which suggests an increased level of disrupted conjugation along the polymer backbone or higher oligomer content. Conversely, high quality PEDOT is characterised by an extended NIR absorption tail and lower absorption in the UV‐vis region.

  相似文献   


14.
Stimuli‐responsive polymer nanoparticles are playing an increasingly more important role in drug delivery applications. However, limited knowledge has been accumulated about processes which use stimuli‐responsive polymer nanospheres (matrix nanoparticles whose entire mass is solid) to carry and deliver hydrophobic therapeutics in aqueous solution. In this research, pyrene was selected as a model hydrophobic drug and a pyrene‐loaded core‐shell structured nanosphere named poly(DEAEMA)‐poly(PEGMA) was designed as a drug carrier where DEAEMA and PEGMA represent 2‐(diethylamino)ethyl methacrylate and poly(ethylene glycol) methacrylate, respectively. The pyrene‐loaded core‐shell nanospheres were prepared via an in situ two‐step semibatch emulsion polymerization method. The particle size of the core‐shell nanosphere can be well controlled through adjusting the level of surfactant used in the polymerization where an average particle diameter of below 100 nm was readily achieved. The surfactant was removed via a dialysis operation after polymerization. Egg lecithin vesicles (liposome) were prepared to mimic the membrane of a cell and to receive the released pyrene from the nanosphere carriers. The in vitro release profiles of pyrene toward different pH liposome vesicles were recorded as a function of time at 37 °C. It was found that release of pyrene from the core‐shell polymer matrix can be triggered by a change in the environmental pH. In particular the pyrene‐loaded nanospheres are capable of responding to a narrow window of pH change from pH = 5, 6, to 7 and can achieve a significant pyrene release of above 80% within 90 h. The rate of release increased with a decrease in pH. A first‐order kinetic model was proposed to describe the rate of release with respect to the concentration of pyrene in the polymer matrix. The first‐order rate constant of release k was thus determined as 0.049 h?1 for pH = 5; 0.043 h?1 for pH = 6; and 0.035 h?1 for pH = 7 at 37 °C. The release of pyrene was considered to follow a diffusion‐controlled mechanism. The synthesis and encapsulation process developed herein provides a new approach to prepare smart nanoparticles for efficient delivery of hydrophobic drugs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4440–4450  相似文献   

15.
Polyaniline (PAni) grafted nano silica were synthesized successfully by in situ polymerization of aniline (An) using ammonium persulphate (APS) as oxidant by three procedures: Firstly, γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane (EPTMS) reacted with nano silica. Secondly, the EPTMS modified nano silica reacted with An as an initiator site introduced onto the silica surface, and finally PAni grafted silica was obtained by in situ chemical oxidative An. The chemical grafting of PAni was confirmed by FTIR and UV–Vis. The percentages of grafting EPTMS and An onto nano silica were 24.5 wt% and 10.3 wt%, respectively, calculated from elemental analysis (EA), while the percentage of grafting PAni was 157.7 wt% as a mass ratio of the grafting PAni and charged nano silica, investigated by TGA. In addition, characteristic agglomerate morphology of PAni was observed in the composite by SEM. The electrical conductivity of the product was 2.6 × 10?6 S cm?1 and it manifested that the resulted product was a typical semiconductor. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Poly(aniline‐co‐ethyl 3‐aminobenzoate) (3EABPANI) copolymer was blended with poly(lactic acid) (PLA) and co‐electrospun into nanofibers to investigate its potential in biomedical applications. The relationship between electrospinning parameters and fiber diameter has been investigated. The mechanical and electrical properties of electrospun 3EABPANI‐PLA nanofibers were also evaluated. To assess cell morphology and biocompatibility, nanofibrous mats of pure PLA and 3EABPANI‐PLA were deposited on glass substrates and the proliferation of COS‐1 fibroblast cells on the nanofibrous polymer surfaces determined. The nanofibrous 3EABPANI‐PLA blends were easily fabricated by electrospinning and gave enhanced mammalian cell growth, antioxidant and antimicrobial capabilities, and electrical conductivity. These results suggest that 3EABPANI‐PLA nanofibrous blends might provide a novel bioactive conductive material for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

17.
This article summarizes recent progress in the post‐functionalization of conjugated polymers by electrochemical methods. These electrochemical polymer reactions typically proceed via electrochemical doping of a conjugated polymer film, followed by chemical transformation. Examples include the quantitative oxidative fluorination of polyfluorenes and oxidative halogenation of polythiophenes, as well as the reductive hydrogenation of polyfluorenones. The degree of functionalization, otherwise known as the reaction ratio, can be controlled by varying the charge passed through the polymer, allowing the optoelectronic properties of the conjugated polymers to be tailored. Wireless bipolar electrodes with an in‐plane potential distribution are also useful with regard to the electrochemical doping and reaction of conjugated polymers and allow the synthesis of films exhibiting composition gradients. Such bipolar electrochemistry can induce multiple reaction sites during electrochemical polymer reactions.

  相似文献   


18.
19.
Arborescent copolymers with a core‐shell‐corona (CSC) architecture, incorporating a polystyrene (PS) core, an inner shell of poly(2‐vinylpyridine), P2VP, and a corona of PS chains, were obtained by anionic polymerization and grafting. Living PS‐b‐P2VP‐Li block copolymers serving as side chains were obtained by capping polystyryllithium with 1,1‐diphenylethylene before adding 2‐vinylpyridine. A linear or arborescent (generation G0 – G3) PS substrate, randomly functionalized with acetyl or chloromethyl coupling sites, was then added to the PS‐b‐P2VP‐Li solution for the grafting reaction. The grafting yield and the coupling efficiency observed in the synthesis of the arborescent PS‐g‐(P2VP‐b‐PS) copolymers were much lower than for analogous coupling reactions previously used to synthesize arborescent PS homopolymers and PS‐g‐P2VP copolymers from the same types of coupling sites. It was determined from static and dynamic light scattering analysis that PS‐b‐P2VP formed aggregates in THF, the solvent used for the synthesis. This presumably hindered coupling of the macroanions with the substrate, and explains the low grafting yield and coupling efficiency observed in these reactions. Purification of the crude products was also problematic due to the amphipolar character of the CSC copolymers and the block copolymer contaminant. A new fractionation method by cloud‐point centrifugation was developed to purify copolymers of generations G1 and above. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1075–1085  相似文献   

20.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号