首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of casting conditions, including casting solution (composition and temperature) and coagulation conditions (pre‐evaporation time, temperature and concentration of coagulation bath) on the structure and performance of acrylonitrile–maleic anhydride copolymer membrane have been investigated. The results showed that the water flux decreased gradually while the rejection of bovine serum albumin (BSA) decreased as the concentration of copolymer increased. When the total solid concentration was kept unchanged, the water flux increased with additive polyvinylpyrrolidone (PVP), the rejection did not decrease until the ratio of PVP/copolymer was 60%. When the content of copolymer in the casting solution was kept constant, the water flux decreased rapidly while the rejection increased a little (compared with the case of no additive) as the ratio of PVP/copolymer increased. As to the temperature of casting solution, the water flux had a maximum at 45 °C and the rejection had a maximum and a minimum at 45 and 55 °C, respectively. The water flux had a maximum value when the pre‐evaporation time was 40 sec. The rejection of BSA was almost unchanged when the pre‐evaporation time was less than 40 sec. and then decreased and reached a minimum value at 60 sec. As the temperature of coagulation bath increased, the water flux reached a maximum at 35 °C while the rejection increased uniformly. With increasing the concentration of DMSO in the coagulation bath, the water flux decreased gradually and got to a minimum at 50 wt% as the concentration of dimethylsulfoxide in the coagulation bath increased, but no apparent effect on the rejection was observed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, cellulose acetate (CA) ultrafiltration (UF) membranes were prepared using the phase inversion method. Effects of CA and polyethylene glycol (PEG) concentrations in the casting solution and coagulation bath temperature (CBT) on morphology of the synthesized membranes were investigated. Based on L9 orthogonal array of Taguchi experimental design 18 membranes were synthesized (with two replications) and pure water permeation flux through them were measured. It was found out that increasing PEG concentration in the casting solution and CBT, accelerate diffusional exchange rate of solvent 1-methyl-2-pyrrolidone (NMP) and nonsolvent (water) and consequently facilitate formation of macrovoids in the membrane structure. Increasing CA concentration, however, slows down the demixing process. This prevents instantaneous growth of nucleuses in the membrane structure. Hence, a large number of small nucleuses are created and distributed throughout the polymer film and denser membranes are synthesized. Rate of water flux through the synthesized membranes is directly dependent on the size and number of macrovoids in the membrane structure. Thus, maximum value of flux is obtained at the highest levels of PEG concentration and CBT (10 wt.% and 23 °C, respectively) and the lowest level of CA concentration (13.5 wt.%). Analysis of variance (ANOVA) showed that all parameters have significant effects on the response. However, CBT is the less influential factor than CA and PEG concentrations on the response (flux).  相似文献   

3.
The influence of inorganic filler TiO2 nanoparticles on the morphology and properties of polysulfone (PS) ultrafiltration membranes was investigated. PS/TiO2 composite membranes were prepared by a phase‐inversion method. TiO2 nanoparticles modified by sodium dodecyl sulfate were uniformly dispersed in an 18 wt % PS casting solution. The addition of TiO2 resulted in an increase in the pore density and porosity of the membrane skin layer. The pore size distribution changed from the log‐normal distribution to the bimodal distribution because of the presence of TiO2 nanoparticles, and some large pores were observed when the concentration of the filler was over 3 wt %. The skin layer was gradually thickened; meanwhile, the morphology sublayer changed from macrovoids to spongelike pores, in comparison with PS membranes without the filler. The addition of TiO2 also induced increases in the hydrophilicity, mechanical strength, and thermal stability. The ultrafiltration experiments showed when the concentration of TiO2 was less than 2 wt %, the permeability and rejection of the membrane was enhanced and then decreased drastically with a higher filler concentration (>3%). © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 879–887, 2006  相似文献   

4.
Positively charged membrane with various charged groups were prepared by in situ amination and phase inversion in which the amine-organic solution and bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) was cast and immerged into an ethanol coagulation bath. The separation performance and morphologies were examined to investigate the effect of hydrophilicity of charged groups on the selective properties and the structure formation of the membranes. Positively charged groups introduced in the membranes were trimethylbenzylammonium, triethylbenzylammonium, tri-n-propylbenzylammonium and tri-n-butylbenzylammonium, in order of increasing hydrophobicity. Pure water flux and rejection to gelatin of the membranes at three pH values changed remarkably with increasing chain length of alkyl groups. The tendency of the change was mainly explained by coagulation value of the casting solution. The streaming potential and ion exchange capacity of the membranes were determined and the results showed that the membranes were all positively charged. Furthermore, water content, pore size distribution and SEM images of the membranes were examined as well.  相似文献   

5.
Flat‐sheet asymmetric polyethersulfone (PES) membranes were prepared from polyethersulfone (PES)/ polyethylene glycol (PEG)/ N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion induced by immersion precipitation in water coagulation bath. Effects of propionic acid (PA) as a non‐solvent additive (NSA) on morphology and performance of the membranes prepared from PES/PEG 6000/NMP system in water coagulation bath were investigated. The cross section morphology of the membranes was studied by scanning electron microscopy (SEM). In addition, performance of the membranes was studied by water content measurements and separation experiments using pure water and human serum albumin (HSA) protein solution as feeds. According to SEM analysis, it was found out that the NSA has a significant influence on the structure of the skin layer and the sublayer. The obtained results indicated that addition of PA to the casting solution decreases permeation flux of the prepared membranes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Using diethylene glycol (DegOH) as non‐solvent additive (NSA) and N, N‐dimethylacetamide (DMAc) as solvent (S), polyethersulfone (PES) flat sheet membranes were prepared via immersion precipitation combined with the vapor induced phase separation (VIPS) process. Light transmittance was used to follow the precipitation rate during the immersion process as well as during the VIPS stage. As the addition of the NSA, the viscosity of casting solutions increased, which led to a slow precipitation rate. Though the precipitation rate decreased, the instantaneous demixing type was maintained. High flux membranes were obtained only at a high mass ratio of NSA/S; producing membranes had cellular pores on the top surface and sponge‐like structure on cross section. The VIPS process prior to immersion precipitation was important for the formation of cellular pore on the surface. With the increase in exposure time, the liquid–liquid phase separation took place on the surface of casting solution; nucleation and growth induced the formation of cellular pore on the top surface. Coagulation bath temperature also had large effect on the precipitation rate; high temperature on coagulation bath mainly accelerated the transfer of solvent and non‐solvent. Higher flux membrane with a porous skin layer could be obtained at a high coagulation bath temperature, but at the same time the mechanism properties were weakened. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Porous membranes were prepared via phase inversion process from casting solution composed of poly(vinylidene fluoride) (PVDF), N,N-dimethylacetamide (DMAc), and hyperbranched polyglycerol (HPG). The membranes were characterized in terms of surface and bulk chemical compositions, morphology, water contact angle, porosity, and water flux. The effects of HPG content on membrane structures and properties were investigated. The effect of HPG addition on the hydrophilicity was discussed as well when the compositions of coagulation bath were changed. To better understand the special effects of HPG on the structures and properties of the membranes, PVDF membranes prepared using HPG as the additive were compared with those prepared using polyethylene glycol (PEG) as the additive.  相似文献   

8.
Throughout this study, the effect of certain organic acids, methacrylic acid, lactic acid and tartaric acid, doped in polysulfone (PSF) casting solution onto the performance of nanofiltration (NF) membranes was investigated. Different NF membranes have been prepared from m-phenylenediamine and trimesoylchloride onto the top surface of the acid-modified PSF membranes through regulating the concentration and contact time of the conventional interfacial polymerization process. The study of scanning electron microscopy (SEM) was used to investigate the influence of acids on the morphology of membranes and cross-sectional structures. The functional groups, hydroxyl and carboxylic acid, of the acids have resulted in a significant increase in membrane thickness, porosity and hydrophilicity, with a decrease in macrovoid capacity of the PSF layer. The acid-modified PSF/TFC membranes showed higher rejection of salt, with an increment in water flux compared to the neat membrane. Water flux and salt rejection (Rs %) of the control membrane was 7.6 L/m2 h and 65.4%, whereas polysulfone/methacrylic acid (PSF/MAAc), polysulfone/tartaric acid (PSF/TAc), and polysulfone/lactic acid (PSF/LAc) were 16.8, 18.5, and 20.2 L/m2 h and 88, 88.2 and 94.1%, respectively. Efficiency of prepared NF membranes under various inlet pressures and specific salts was investigated with selectivity and salt rejection. The salt rejection of a mixed salt solution was found to meet the order of Rs % CaSO4 ≥ Rs % Na2SO4 ˃ Rs % MgSO4 ˃ Rs MgCl2 ˃ Rs % NaCl.  相似文献   

9.
In the present study, modification of nanoparticles (NPs) was investigated to mitigate aggregation of SiO2 nanoparticles and improve the polymeric membrane's performance. For this purpose, the surface of SiO2 nanoparticles was activated with amine groups, and polymethacrylic acid (PMAA) was grafted on the surface of NPs by atom transfer radical polymerization. Modified NPs were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) tests. Polyethersulfone (PES) membranes were fabricated with both SiO2 and SiO2‐g‐PMAA NPs via nonsolvent‐induced phase separation method. The fabricated membranes were characterized regarding their permeability, hydrophilicity, and porosity properties, and their separation efficiency was tested using the synthetic oil‐in‐water emulsion. The surface and cross‐sectional morphologies of membranes were observed by field emission scanning electron microscopy (FESEM). The experimental trials showed that modified NPs dispersed more uniformly in the structure of membranes and hydroxyl groups on the surface of NPs acted more effectively. Modification of NPs enhance the membrane performance in terms of permeate flux, hydrophilicity, and porosity. NPs modification improved the permeate flux about 46%. Oil rejection for all tested membranes was more than 98%, and modification of NPs did not reduce the rejection of membranes. The optimum concentration was obtained as 1 wt.% and 1.5 wt.% for SiO2 and SiO2‐g‐PMAA, respectively. Aggregation effect dominated at concentrations beyond the optimum values that decreased the permeate flux, consequently.  相似文献   

10.
Polyvinylidene fluoride (PVDF) membranes were prepared via the phase inversion method from casting solutions containing PVDF, dimethylformamide (DMF), and polyvinylpyrrolidone (PVP) as pore former. PVP was used in the casting solution in a range of 0–5 wt % and extracted. The effect on membranes of using PVP in the casting process was analyzed by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, viscosity, and water permeability techniques. With an increase of PVP from 0 to 5 wt %, the PVDF casting solution viscosities increased from 858 to 1148 cP; the resulting PVDF membrane thickness increased; and the crystallinity of PVDF membranes decreased from 40.0 to 33.3%, which indicates that the addition of PVP inhibits the degree of crystallization in the PVDF membranes. SEM results revealed the shape and size of macropores in the membranes; these macropores changed after PVP addition to the casting solutions. The impact of structural changes on free-volume properties was evaluated using positron annihilation lifetime spectroscopy (PALS) studies. PALS analysis indicated no effect on the average radius (~3.4 Å) of membrane free-volume holes from the addition of PVP to the casting solution. However, the percentage of o-Ps pick-off annihilation intensity, I3, increased from 1.7 to 5.1% with increased PVP content. Further, increasing the PVP content from 0.5 to 5% resulted in an increased final pure water permeability flux. For instance, the 210 min flux for a 14% PVDF + 0.5% PVP membrane was found to be 3.3 times greater than a control membrane having the same PVDF concentration. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 589–598  相似文献   

11.
Potential fouling reducing coating materials were synthesized via free-radical photopolymerization of aqueous solutions of poly(ethylene glycol) diacrylate (PEGDA). Crosslinked PEGDA (XLPEGDA) exhibited high water permeability and good fouling resistance to oil/water mixtures. Water permeability increased strongly with increasing the water content in the prepolymerization water mixture, going from 10 to 150 L μm/(m2 h bar) as prepolymerization water content increased from 60 to 80 wt.%. However, molecular weight cutoff decreased as water content increased. These materials were applied to polysulfone (PSF) UF membranes to form coatings on the surface of the PSF membranes. Oil/water crossflow filtration experiments showed that the coated PSF membranes had water flux values 400% higher than that of an uncoated PSF membrane after 24 h of operation, and the coated membranes had higher organic rejection than the uncoated membranes.  相似文献   

12.
Polysulfone (PSF) membranes were treated with ozone to introduce peroxides, and then grafted with either acrylic acid or chitosan, followed by the immobilization of heparin. The effect of spacer arm on blood compatibility was investigated using three chitosans of different molecular weight [1170 (water soluble), 160 000, and 400 000] and similar degrees of deacetylation (75%). The hydrophilicity was evaluated by measuring the contact angle of water. Blood compatibility was evaluated using the activated partial thromboplastin time (APTT) as well as the adhesion of platelets. The protein affinity was determined by the absorption of human serum albumin (HSA) and human plasma fibrinogen (HPF). The results show that by the coupling of chitosan, the amount of heparin immobilized can be increased by four times. Water contact angle (from 78 ° to 41 °) decreased with the increase of the amount of heparin immobilized, showing increased wettability. The heparinized PSF membrane showed longer APTT and decreasing platelet adhesion, compared to that of unmodified PSF membrane. The adsorption of HSA and HPF were reduced to 17 and 6%, respectively. This suggests that longer spacer binding to heparin can increase the opportunity of anti‐coagulation on contacting blood. These results demonstrated that the hydrophilicity and blood compatibility of PSF membrane could be improved by chitosan and heparin conjugate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
以聚醚链段为侧链的两亲性梳状聚醚硅氧烷(ACPS)为改性剂,研究了相转化法制备聚偏氟乙烯(PVDF)多孔膜的改性效果与机理.采用SEM、XPS、接触角、水通量等考察了ACPS对膜结构与性能的影响.研究发现,ACPS在相转化成膜过程中不流失,随着制膜液中ACPS含量的增加,相分离速度降低,膜中微孔由指状结构向蜂窝状结构发展,膜强度提高,亲水性显著提高.提出了ACPS在膜表面的富集现象和在膜中的稳定性机理和模型.结果表明,两亲性梳状聚醚硅氧烷在原理上是一类适合于相转化法制备聚合物微孔膜表面亲水化改性的有效物质.  相似文献   

14.
Regenerated cellulose membranes have been traditionally manufactured using the viscose or the copper‐ammonia process. Today, membranes made by this process are still used in many fields such as dialysis. However, there are some serious environmental problems inherent in the existing processing routes. The new N‐methylmorpholine‐N‐oxide (NMMO) process can overcome these disadvantages and provides membranes with improved mechanical properties. In the present work, cellulose membranes were successfully prepared from NMMO solution under various conditions. It was found that the cellulose concentration is a decisive factor in controlling the membrane permeation properties. For a given coagulation system, higher cellulose concentration leads to membranes with greater rejection of bovine serum albumin (BSA) and lower pure water flux. It was also found that both the degree of polymerization (DP) and the type of cellulose pulp have great effect on the morphology and permeation properties of the membrane support layer. With increasing NMMO concentration and temperature of the coagulation bath, the pure water flux increases while the rejection of BSA decreases; a result of the larger mean pore size formed during coagulation.  相似文献   

15.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
以非离子表面活性剂聚氧乙烯(20)鲸蜡醇醚(Brij58)为模板, 采用自由基聚合制备得到聚(N-异丙基丙烯酰胺)/Brij58/粘土纳米复合模板水凝胶(PLH). 相比于传统纳米复合水凝胶, PLH水凝胶力学性能与亲水性明显改善. 场发射扫描电镜(FESEM)结果表明: Brij58的引入导致传统纳米复合水凝胶的孔洞数量增加, 孔与孔相互贯穿, 大孔结构更加规整, 大孔之间由众多小孔连接. 拉伸应力-应变、储能模量和溶胀动力学研究结果表明, 断裂应力、断裂负载和断裂伸长率随Brij58含量的增加呈先增加后降低的趋势, 然而水凝胶储能模量与最大溶胀度随Brij58含量的增加而增加. 同时, 表面接触角结果表明: 由于Brij58的模板作用和Brij58同粘土之间的吸附作用, 使PLH水凝胶表面接触角先增大后减小.  相似文献   

17.
Polyethersulfone (PES) hollow fiber membranes for kidney dialysis application were prepared by the dry-jet wet-spinning method. A dual-coagulation bath technology was first time employed for fabricating the kidney dialysis membranes with a tight inner skin and loose outer supporting layer structure. A weak coagulant isopropanol (IPA) was served as the first external coagulation bath, while water as the second bath. Experiments demonstrate their advantages of better controlling both inner and outer skin morphology. The as-spun fibers have a higher mean effective pore size (μp), pure water permeation flux (PWP) and molecular weight cut-off (MWCO) with an increase in N-methyl-2-pyrrolidone (NMP) percentage in bore fluid (i.e., internal coagulant). After being treated in 8000 ppm NaOCl solution for 1 day, fibers show larger pore sizes and porosity in both inner and outer surfaces, and thinner inner and outer layers than their as-spun counterparts. Among them, the bleached fibers spun with 50 wt.% NMP in bore fluid have the MWCO (43 kDa) and PWP (40 × 10−5 L m−2 Pa−1 h−1) suitable for kidney dialysis application. Based on SEM observations and solute rejection performance, the further heat treated fibers in an aqueous solution is found to be an effective way to fine tune membranes morphology and MWCO for kidney dialysis application. The solute rejection performance data of the hollow fiber membranes spun with 55 wt.% NMP in bore fluid after heat treated at 90 °C in water for 2 h were found to be very appropriate for the kidney dialysis application.  相似文献   

18.
倒相法制备多孔PVDF薄膜的条件探索   总被引:10,自引:0,他引:10  
任旭梅  吴锋  白莹  李汉军  黄学杰 《电化学》2001,7(4):501-505
本文运用倒相法制备了适用于锂离子二次电池用的PVDF多孔隔膜材料 ,通过改变聚合物与溶剂、非溶剂之间的配比 ;控制温度、溶剂挥发速率、在非溶剂浴中的时间等条件 ,得到了一系列多孔PVDF薄膜 ,研究了涂敷溶液中溶剂与非溶剂的浓度对PVDF多孔膜的结构和性质的影响 ,得出了规律性的结论  相似文献   

19.
A serious problem faced during the application of membrane filtration in water treatment is membrane fouling by natural organic matter (NOM). The hydrophilicity, zeta potential and morphology of membrane surface mainly influence membrane fouling. The aim of the present study is to reveal the correlation between membrane surface morphology and membrane fouling by use of humic acid solution and to investigate the efficiency of backwashing by water, which is applied to restore membrane flux. Cellulose acetate butyrate (CAB) hollow fiber membranes were used in the present study. To obtain the membranes with various surface structures, membranes were prepared via both thermally induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) by changing the preparation conditions such as polymer concentration, air gap distance and coagulation bath composition. Since the membrane material is the same, the effects of hydrophilicity and zeta potential on membrane fouling can be ignored. More significant flux decline was observed in the membrane with lower humic acid rejection. For the membranes with similar water permeability, the lower the porosity at the outer surface, the more serious the membrane fouling. Furthermore, the effect of the membrane morphology on backwashing performance was discussed.  相似文献   

20.
将辣素功能结构单体N-(4-羟基-3-甲氧基苯甲基)丙烯酰胺(HMBA)和甲基丙烯酸甲酯(MMA)通过自由基引发合成出抑菌型共聚物P(H-co-M), 通过红外吸收光谱和热重分析证实了共聚物的结构. 采用共混法将共聚物引入聚砜(PSF)铸膜液中, 通过浸没沉淀相转化法制备了新型抑菌超滤膜. 考察了P(H-co-M)含量对超滤膜分离性能及抑菌性能的影响. 结果表明, 当P(H-co-M)质量分数为0.5%时, 超滤膜分离性能最佳, 对5 mg/L腐殖酸溶液的稳定水通量为122.2 L/(m2·h), 截留率为84.4%, 与未添加P(H-co-M)的超滤膜相比, 分别提高了19.2%和9.2%. 改性超滤膜具有较强的抑菌性能, 当P(H-co-M)含量为1.0%时, 抑菌率最大(约80.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号