首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yunsheng Ma 《Surface science》2009,603(7):1046-1391
The formation, stability and CO adsorption properties of PdAg/Pd(1 1 1) surface alloys were investigated by X-ray photoelectron spectroscopy (XPS) and by adsorption of CO probe molecules, which was characterized by temperature-programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The PdAg/Pd(1 1 1) surface alloys were prepared by annealing (partly) Ag film covered Pd(1 1 1) surfaces, where the Ag films were deposited at room temperature. Surface alloy formation leads to a modification of the electronic properties, evidenced by core-level shifts (CLSs) of both the Pd(3d) and Ag(3d) signal, with the extent of the CLSs depending on both initial Ag coverage and annealing temperature. The role of Ag pre-coverage and annealing temperature on surface alloy formation is elucidated. For a monolayer Ag covered Pd(1 1 1) surface, surface alloy formation starts at ∼450 K, and the resulting surface alloy is stable upon annealing at temperatures between 600 and 800 K. CO TPD and HREELS measurements demonstrate that at 120 K CO is exclusively adsorbed on Pd surface atoms/Pd sites of the bimetallic surfaces, and that the CO adsorption behavior is dominated by geometric ensemble effects, with adsorption on threefold hollow Pd3 sites being more stable than on Pd2 bridge sites and finally Pd1 a-top sites.  相似文献   

2.
毛自力  李超荣  邵岫余  陈红  王文魁 《物理学报》1992,41(11):1753-1758
研究了落管中Pd77.5Au6Si16.5合金的过冷、生核及亚稳相的形成。在小于400μm的金属小球中发现Pd的固溶体相;在较大的金属小球中则观察到Pd3Si金属间化合物相。本文还在经典生核理论的基础上,计算了不同相的固液自由能差、成核功、生核速率及晶体生长速度随温度的变化关系,并由此得到时间-温度-转变曲线(t-T-t),计算与实验结果较为一致。 关键词:  相似文献   

3.
The self‐regenerative property of LaCo1–xyPdx Zny O3±δ and LaFe1–xyPdx Zny O3±δ solid solutions with monometallic Pd or bimetallic Pd/Zn substituents for Co or Fe is studied under a redox cycle by high angular annular dark‐field scanning transmission electron microscopy (STEM‐HAADF) and energy dispersive X‐ray spectroscopy (EDX) and X‐ray diffraction (XRD). These results reveal that the composition of perovskites determines the self‐regenerative property that occurs largely in LaCo1–xyPdx Zny O3±δ but is limited greatly in LaFe1–xyPdx Zny O3±δ. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
XPS core level binding energy shifts of the 3d52 energy levels of Pd and Ag for a large number of coevaporated PdxAg1-x alloys with 0?x?1 have been measured. An analysis of the Pd level shifts yields the heats of formation of the PdAg alloy system in good agreement with those reported from calorimetric measurements. Combining these data with the Ag level shifts one obtains the heat of formation of Cd diluted into PdxAg1-x.  相似文献   

5.
Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn (n=1–5) adsorbed on the NiAl(1 1 0) alloy surface were carried out within the framework of density functional theory (DFT). In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom, with an adsorption energy difference of 0.04 eV. Among the possible structures considered for Pdn (n=1–5) clusters adsorbed on NiAl(1 1 0) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1 to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4 and Pd5. Furthermore, metal-substrate bonding prevails over metal–metal bonding for Pd cluster adsorbed on NiAl(1 1 0) surface. The density of states for Pd atoms of Pd/NiAl(1 1 0) system are strongly affected by their chemical environment. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(1 1 0) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices.  相似文献   

6.
A YAG laser operating at the second harmonic wavelength (532 nm, 10 Hz, 8 ns and 40 mJ) was used to elaborate bimetallic nanoparticles by laser ablation of Ni75Pd25 and Au75Ag25 targets in water. TEM–EDX, UV–Vis spectroscopy and PIXE measurements were performed to obtain information on their mean sizes, size distributions and chemical composition as a function of the time of laser ablation. The surface of the laser impacted regions of the targets were characterized by RBS in order to check their composition after the laser ablation. The so-obtained bimetallic nanoparticles always show a homogeneous composition. However, while the composition of Au–Ag nanoparticles was found to be very similar to the one of the alloy target, the composition of the Ni–Pd nanoparticles can be different from the nominal composition of the alloy target. Segregation phenomena can be invoked to explain the difference between the Ni–Pd nanoparticles and the Au–Ag nanoparticles compositions obtained in the same conditions. However, an influence of chemical reactions occurring in the high pressure plasma created locally at liquid–solid interface (called ‘reactive quenching’) cannot be completely ruled out.  相似文献   

7.
As‐grown platelets formed from tris‐(dibenzylideneacetone) dipalladium(0) [Pd2(dba)3] precursor in the presence of Pd17 RNA are investigated before and after thermal annealing. Results show that as‐grown platelets are disordered crystals of Pd2(dba)3 containing 1?2 nm Pd clusters and platelets grown in the absence of RNA are morphologically and structurally similar to those formed with RNA. The initially formed crystals are so sensitive to environmental variables that the degree of crystallinity can not be determined accurately by electron diffraction. X‐ray crystallography on as‐grown platelets gives a crystal structure consistent with Pd2(dba)3, but reveals a composition of ≈Pd1.07(dba)3, indicating one Pd atom in Pd2(dba)3 is lost from the structure. Both electron beam and thermally induced decomposition of as‐grown Pd2(dba)3 platelets having a hexagonal habit on the micrometer scale produces elemental Pd platelets having a hexagonal habit on the nanometer scale. These hexagonal platelets are composed of a partially sparse form of Pd2(dba)3 that is initially crystalline but rapidly degrades due to the loss of Pd atoms from organic ligand cages. Once released, Pd atoms aggregate to form Pd clusters, which grow and transform into well‐formed Pd nanocrystals under electron‐beam irradiation or through thermal annealing.  相似文献   

8.
Pd76Ag24 nanoparticles with high purity and a face-centered cubic structure were prepared using a solvothermal method. The lattice parameter of the Pd77Ag23 nanopowders (space group 225Fm3m) was calculated to be a?=?3.9382 Å. The primary particle size was calculated to be 7.7 nm from the X-ray line width using the Scherrer formula, and the interplanar distances was estimated to be 2.272 and 2.000 Å based on indexing on the (111) and (200) plane, respectively. These values are slightly larger than those of pure Pd and smaller than Ag in the (111) plane. The linear relationship of the hydrogen permeation flux with the square root of the hydrogen partial pressure gradient across a 0.26-mm-thick Pd/Ag-YSZ cermet membrane confirmed the major hydrogen transport through the Pd/Ag phase of cermet membranes. The Pd/Ag-YSZ cermet membranes showed significantly higher hydrogen permeation flux than the Pd-YSZ cermet membrane, even though the activation energy for the Pd/Ag alloy cermet membranes showed slightly higher values than that of the Pd cermet membranes. The hydrogen–oxygen dual flux through Pd/Ag-YSZ cermet membranes was confirmed by the maximum hydrogen production by combining the ability of hydrogen production from water with the function of hydrogen separation on composite membranes  相似文献   

9.
We show that the local impurity density of states and the impurity electron—electron interactions can be obtained from impurity Auger spectra. For a Ag0.95Pd0.05 alloy we find 11% Pd(d) character in the Ag d band and Pd(4d-4d) Coulomb interactions which are much larger than the virtual bound state widths.  相似文献   

10.
11.
Controlling the electronic structure of a catalyst has become an important approach to tune and optimize its antipoisoning ability and catalytic efficiency for a chemical reaction. Using d ‐mannitol as a structure‐directing agent to induce size transformation and twinned defects in copper particles, penta‐twinned Cu elongated pentagonal bipyramids as supports have been synthesized, and HAuCl4 is reduced in situ to form an AuCu alloy on the surface of Cu, generating a self‐supporting AuCu@Cu core–shell structure for application as a glucose sensor in a neutral medium. The AuCu@Cu elongated pentagonal bipyramids with 0.42 at% Au show activities comparable with the Au and Pt catalyst but are more tolerant toward Cl? than Au and more tolerant toward H3–xPO4x? than Cu. The mass activity of AuCu@Cu reaches 0.10 A mg?1 of Au at 0.6 V versus Ag/AgCl (3 m KCl) in a pH 8.0 buffer. The self‐supporting AuCu@Cu elongated pentagonal bipyramids are promising catalysts for glucose sensing in a neutral medium. This work offers an effective way to design antitoxic and durable catalysts with ultralow content of noble metal for glucose sensing.  相似文献   

12.
Results of first-principles calculations of the electronic structure for the ordered compounds Ni3Pd and Pd3Ni at the equilibrium volume with L12 structure reveal that the Ni atoms carry an enhanced moment and that an induced moment is found on the Pd atoms. The Ni moment is higher in Pd3Ni, whereas the Pd moment differs only slightly for these compounds. Large bulk moduli are found (341.34 GPa for Ni3Pd and 314.35 GPa for Pd3Ni), and an abrupt collapse of the magnetic moment is observed in Pd3Ni under lattice compression. The results indicate good conductivity for these compounds as well as half-metallicity for Ni3Pd.  相似文献   

13.
In this work, we report density functional theory calculations exploring H2S dissociation on the (1 1 1) surfaces of Pd, Cu, Ag, Au, and various bimetallic surfaces consisting of those metals. To understand the contributions of lattice strain and electronic ligand effects, the thermodynamics of each elementary dissociation step were explored on model bimetallic surfaces, including PdMPd sandwiches and Pd pseudomorphic overlayers, as well as strained Pd(1 1 1) surfaces and homogeneous Pd3M alloys. Sulfuric (H2S, SH, and S) adsorption energies were found to correlate very well with lattice constant, which can be explained by the strong correlation of the lattice constant with d-band center, Fermi energy, and density of states at the Fermi level for strained Pd(1 1 1) surfaces. Compressing the Pd lattice shifts the d-band center away from the Fermi level, lowers the Fermi energy, and reduces the density of d-states at the Fermi level. All three effects likely contribute to the destabilization of sulfuric adsorption on Pd alloys. Introducing ligand effects was found to alter the distribution of the d-states and shift the Fermi level, which eliminates the correlation of the d-band center with the density of states at the Fermi level and the Fermi energy. As a result, the d-band center by itself is a poor metric of the H2S reaction energetics for bimetallic surfaces. Furthermore, combining strain with ligand effects was found to lead to unpredictable alterations of the d-band. Therefore, adsorption of H2S, SH, and S on PdMPd surfaces do not accurately predict adsorption on Pd3M surfaces.  相似文献   

14.
A combined experimental and theoretical study is presented to understand the novel observed nucleation and early evolution of Ag filaments on β‐Ag2MoO4 crystals, driven by an accelerated electron beam from an electronic microscope under high vacuum. The growth process, chemical composition, and the element distribution in these filaments are analyzed in depth at the nanoscale level using field‐emission scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) with energy‐dispersive spectroscopy (EDS) characterization. To complement experimental results, chemical stability, structural and electronic aspects have been studied systematically using first‐principles electronic structure theory within a quantum theory of atoms in molecules (QTAIM) framework. The Ag nucleation and formation on β‐Ag2MoO4 are a result of structural and electronic changes of the AgO4 tetrahedral cluster as a constituent building block of β‐Ag2MoO4, consistent with Ag metallic formation. The formation of Ag filament transforms the β‐Ag2MoO4 semiconductor from n‐ to p‐type concomitant with the appearance of Ag defects.  相似文献   

15.
A method for the quantitative analysis of Co, Ni, Pd, Ag, and Au in the scrapped printed‐circuit‐board ash by X‐ray fluorescence (XRF) spectrometry using loose powder was developed. The printed‐circuit‐board samples were converted to ash pyrolytically in porcelain crucibles by sequential heating using a gas burner and electric furnace, and then were ground with a ball mill. The calibrating standards were prepared by adding the appropriate amounts of NiO powder and aqueous standard solutions containing Co, Pd, Ag, and Au to the base mixtures of Al2O3 (5.0 mass%), SiO2 (49 mass%), CaCO3 (11 mass%), Fe2O3 (3.3 mass%), and CuO (30 mass%) as a matrix. Then, 10 g of the resulting mixtures were dried and homogenized for 90 min with a V‐type mixing machine. Specimens for XRF analysis were prepared from the so‐called loose‐powder method in which powder samples were compacted into a hole (12.0‐mm diameter and 5.0‐mm height) in an acrylic plate and covered with a 6‐µm thickness of polypropylene film. Matrix effects were corrected using the intensity value of Compton scattering for PdKα, AgKα, and AuLβ2, and that of background scattering at 35.8° (2θ) for CoKα and NiKα. The detection limits corresponding to three times the standard deviation of the blank intensity were 2.5–45 µg g?1. The proposed method was validated against the pressed‐powder‐pellet method by comparing the calibration curves. Moreover, the concentrations of Co, Ni, Pd, and Ag determined using the proposed XRF method were approximately the same as those resulting from an atomic‐absorption‐spectrometric analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Resonant Raman scattering spectra of ultrasmall (<2 nm) magic‐size nanocrystals (NCs) are reported. The spectra of CdS and CdSx Se1‐x NCs, resonantly excited with 325 nm and 442 nm laser lines, correspondingly, reveal broad features in the range of bulk optical phonons. The relatively large width, ~50 cm‐1, and downward shift, ~20 cm‐1, of the Raman bands with respect to the longitudinal optical phonon in bulk crystals and large NCs are discussed based on the breaking of the translational symmetry and bond distortion in these ultrasmall NCs. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Positron annihilation measurements have been performed in solid, liquid and undercooled Co80Pd20 alloy using electromagnetic levitation as containerless processing method. The formation enthalpy for a single vacancy is H1v = (1.7 ± 0.1) eV. In the melt, the thermal expansion continues linear in the undercooled phase and is larger than that of the solid alloy. The mean free volume in the liquid phase is slightly larger than the volume of a single vacancy. At the Curie temperatures of both solid and liquid phase, the S-parameter indicates no effect on the atomic structure. Different H2 concentrations in the processing gas atmosphere have no detectable influence on the data.  相似文献   

18.
The surface core-level binding-energy shift (SCLS) of Pd at the AgcPd1−c(1 1 1) surface is calculated as a function of bulk concentration of the alloy. The equilibrium volume and the surface concentration profile used in the calculations refer to the 0 K case. The SCLSs are evaluated within the Z + 1 approximation. The results are analysed using the mixing enthalpy of the alloy and the bulk and surface chemical potentials. A relation of the SCLS to the bulk concentration is considered. This relation is shown to be mediated by the surface concentration profile which induces the observed nonlinear behaviour. The results are interpreted using a simple model for the alloy electronic structure.  相似文献   

19.
Photogenerated carriers in Si–Ge alloy nanocrystals (NCs) prepared by co‐sputtering method were investigated by mean of transient induced absorption. The carrier relaxation features multiple components, with three decay life times of τ ≈ 600 fs, 12 ps, and 15 ns, established for Si0.2Ge0.8 alloy NCs of a mean crystal size of 9 nm and standard deviation of 3 nm. Deep carrier traps, identified at the boundary between the NCs and the SiO2 host with the ionization energy of about 1 eV, are characterized by a long‐range Coulombic potential. These are responsible for rapid depletion of free carrier population within a few picoseconds after the excitation, which explains the low emissivity of the investigated materials, and also sheds light on the generally low luminescence of Si/Ge and Ge NCs. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
The effect of 0, 0.5, and 1?μm-thick Ag interlayers on the chemical interaction between Pd and Fe in epitaxial Pd(0?0?1)/Ag(0?0?1)/Fe(0?0?1)/MgO(0?0?1) and Fe(0?0?1)/Ag(0?0?1)/Pd(0?0?1)/MgO(0?0?1) trilayers has been studied using X-ray diffraction, 57Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, and magnetic structural measurements. No mixing of Pd and Fe occurs via the chemically inert Ag layer at annealing temperatures up to 400?°C. As the annealing temperature is increased above 400?°C, a solid-state synthesis of an ordered L10-FePd phase begins in the Pd(0?0?1)/Ag(0?0?1)/Fe(0?0?1) and Fe(0?0?1)/Ag(0?0?1)/Pd(0?0?1) film trilayers regardless of the thickness of the buffer Ag layer. In all samples, annealing above 500?°C leads to the formation of a disordered FexPd1?x(0?0?1) phase; however, in samples lacking the Ag layer, the synthesis of FexPd1?x is preceded by the formation of an ordered L12-FePd3 phase. An analysis of the X-ray photoelectron spectroscopy results shows that Pd is the dominant moving species in the reaction between Pd and Fe. According to the preliminary results, the 2.2?μm-thick Ag film does not prevent the synthesis of the L10-FePd phase and only slightly increases the phase’s initiation temperature. Data showing the ultra-fast transport of Pd atoms via thick inert Ag layers are interpreted as direct evidence of the long-range character of the chemical interaction between Pd and Fe. Thus, in the reaction state, Pd and Fe interact chemically even though the distance between them is about 104 times greater than an ordinary chemical bond length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号