首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The synthesis and characterization of novel poly(CTFE‐g‐oligoEO) graft copolymers [chlorotrifluoroethylene (CTFE) and ethylene oxide (EO)] are presented. First, vinyl ether monomers bearing oligo(EO) were prepared by transetherification of ω‐hydroxyoligo(EO) with ethyl vinyl ether catalyzed by a palladium complex in 70–84% yields. Two vinyl ethers of different molecular weights (three and 10 EO units) were thus obtained. Then, radical copolymerization of the above vinyl ethers with CTFE led to alternating poly(CTFE‐alt‐VE) copolymers that bore oligo(OE) side chains in satisfactory yields (65%). These original poly(CTFE‐g‐oligoEO) graft copolymers were characterized by 1H, 19F, and 13C NMR spectroscopy. Their molecular weights reached 19,000 g mol?1, and their thermal properties were investigated while their glass transition temperatures ranged between ?42 and ?36 °C. Their thermogravimetric analyses under air showed decomposition temperatures of 270 °C with 10% weight loss (Td,10%). These novel copolymers are of potential interest as polymer electrolytes in lithium ion batteries, showing room temperature conductivities ranging from 4.49 × 10?7 to 1.45 × 10?6 S cm?1 for unplasticized material. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
A series of amphiphilic triblock copolymers, poly[oligo(ethylene glycol) methacrylate]xblock‐poly(ε‐caprolactone)‐block‐poly[oligo(ethylene glycol) methacrylate]x, POEGMACo(x), were synthesized. Formation of hydrophobic domains as cores of the micelles was studied by fluorescence spectroscopy. The critical micelle concentrations in aqueous solution were found to be in the range of circa 10?6 M. A novel methodology by modulated temperature differential scanning calorimetry was developed to determine critical micelle temperature. A significant concentration dependence of cmt was found. Dynamic light scattering measurements showed a bidispersed size distribution. The micelles showed reversible dispersion/aggregation in response to temperature cycles with lower critical solution temperature between 75 and 85 °C. The interplay of the two hydrophobic and one thermoresponsive macromolecular chains offers the chance to more complex morphologies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Two dendrimers consisting of a cofacial free‐base bisporphyrin held by a biphenylene spacer and functionalized with 4‐benzeneoxomethane (5‐(4‐benzene)tri‐10,15,20‐(4‐n‐octylbenzene)zinc(II)porphyrin) using either five or six of the six available meso‐positions, have been synthesized and characterized as models for the antenna effect in Photosystems I and II. The presence of the short linkers, ‐CH2O‐, and long C8H17 soluble side chains substantially reduces the number of conformers (foldamers) compared with classic dendrimers built with longer flexible chains. This simplification assists in their spectroscopic and photophysical analysis, notably with respect to fluorescence resonance energy transfer (FRET). Both steady‐state and time‐resolved spectroscopic measurements indicate that the cofacial free bases and the flanking zinc(II)–porphyrin antennas act as energy acceptor and donor, respectively, following excitation in either the Q or Soret bands of the dendrimers. The rate constants for singlet electronic energy transfer (kEET) extracted from the S1 and S2 fluorescence lifetimes of the donor in the presence and absence of the acceptor are ≤ (0.1–0.3)×109 and ~2×109 s?1 for S1→S1 (range from a bi‐exponential decay model) and about 1.5×1012 s?1 for S2→Sn (n>1). Comparisons of these experimental data with those calculated from Förster theory using orientation factors and donor–acceptor distances extracted from computer modeling suggest that a highly restricted number of the many foldamers facilitate energy transfer. These foldamers have the lowest energy by molecular modeling and consist of one or at most two of the flanking zinc porphyrin antennas folded so they lie near the central artificial special pair core with the remaining antennas located almost parallel to and far from it.  相似文献   

4.
Herein, we combine the ideas of concerted emission from fluorophore ensembles and its further amplification through FRET in an organic–inorganic hybrid approach. Spherical and highly fluorescent organic nanoparticles (FONPs, Φf=0.38), prepared by the self‐assembly of oligo(phenylene ethynylene) (OPE) molecules, were selected as a potential donor material. This organic core was then decorated with a shell of fluorescent CdSe/ZnS core–shell quantum dots (QDs; <d>?5.5 nm, Φf=0.27) with the aid of a bifunctional ligand, mercaptopropionic acid. Its high extinction coefficient (?≈4.1×105 m ?1 cm?1) and good spectral match with the emission of the FONPs (J(λ)≈4.08×1016 m ?1 cm?1 nm4) made them a better acceptor candidate to constitute an efficient FRET pair (ΦFRET=0.8). As a result, the QD fluorescence intensity was enhanced by more than twofold. The fundamental calculations carried out indicated an improvement in all the FRET parameters as the number of QDs around the FONPs was increased. This, together with the localization of multiple QDs in a nanometric dimension (volume≈1.8×106 nm3), gave highly bright reddish luminescent hybrid particles as visualized under a fluorescence microscope.  相似文献   

5.
Low‐molecular weight oligo(carbonate‐ether) diols are important raw materials for polyurethane formation, which with tunable carbonate unit content (CU) may endow new thermal and mechanical performances to polyurethane. Herein, facile synthesis of oligo(carbonate‐ether) diols with number average molecular weight (Mn) below 2000 g mol?1 and CU tunable between 40% and 75% are realized in high activity by immortal copolymerization of CO2/propylene oxide (PO) using zinc‐cobalt double metal cyanide complex (Zn‐Co‐DMCC) in the presence of sebacic acid (SA). Mn of the oligomer is in good linear relationship to the mole ratio of PO and SA (PO/SA) and hence can be precisely controlled by adjusting PO/SA. Besides, the molecular weight distribution is quite narrow due to the rapid reversible chain transfer in the immortal copolymerization. High pressure and low temperature are favorable for raising CU. In all the reactions, the weight fraction of propylene carbonate (WPC) can even be controlled as low as 2.0 wt %, and the catalytic activity of Zn‐Co‐DMCC is above 1.0 kgg?1 cat. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
This article describes the syntheses and solution behavior of model amphiphilic dendritic–linear diblock copolymers that self‐assemble in aqueous solutions into micelles with thermoresponsive shells. The investigated materials are constructed of poly(benzyl ether) monodendrons of the second generation ([G‐2]) or third generation ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM). [G‐2]‐PNIPAM and [G‐3]‐PNIPAM dendritic–linear diblock copolymers have been prepared by reversible addition–fragmentation transfer (RAFT) polymerizations of N‐isopropylacrylamide with a [G‐2]‐ or [G‐3]‐based RAFT agent, respectively. The critical micelle concentration (cmc) of [G‐3]‐PNIPAM220, determined by surface tensiometry, is 6.3 × 10?6 g/mL, whereas [G‐2]‐PNIPAM235 has a cmc of 1.0 × 10?5 g/mL. Transmission electron microscopy results indicate the presence of spherical micelles in aqueous solutions. The thermoresponsive conformational changes of PNIPAM chains located at the shell of the dendritic–linear diblock copolymer micelles have been thoroughly investigated with a combination of dynamic and static laser light scattering and excimer fluorescence. The thermoresponsive collapse of the PNIPAM shell is a two‐stage process; the first one occurs gradually in the temperature range of 20–29 °C, which is much lower than the lower critical solution temperature of linear PNIPAM homopolymer, followed by the second process, in which the main collapse of PNIPAM chains takes place in the narrow temperature range of 29–31 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1357–1371, 2006  相似文献   

7.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Polyols based on oligo(vinylacetate) were synthesized using a convenient one‐pot, two‐step process. Polymerization of vinylacetate was performed in 2‐propanol as a chain‐transfer agent using di‐tert‐butylperoxide as a free‐radical initiator. Saponification of the oligomers was performed in both tetrahydrofuran and 2‐propanol using stoichiometric amounts of methanol in the presence of a basic catalyst. Well‐defined oligo(vinylacetate‐co‐vinylalcohol) polyols with a degree of polymerization below 12 and a hydroxyfunctionality smaller than 4 were obtained. Oligo(vinylacetate‐co‐vinylalcohol) was used as a polyol component in the formation of polyurethanes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2085–2092, 2002  相似文献   

9.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

10.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

11.
The branched triazole group is synthesized by click chemistry via a controlled approach of slow addition of AB2 compound to a B2 core, and used as the substituent for 1,6‐heptadiyne monomer. Metathesis cyclopolymerization of monomer is performed well in dichloromethane without the weakly coordinating additive, indicating that the branched triazole itself can stabilize the living propagating chain, to generate branched triazole pendant‐contained polyacetylene with trans‐double bonds and five‐membered ring repeating units along the conjugated backbone. The LiTFSI doped polyacetylenes display ionic conductivities of 2.5–1.8 × 10?6 S cm?1; by further doping with iodine, polyacetylenes show the improved ionic and electronic conductivities of 1.3 × 10?5 and 2.1 × 10?7 S cm?1 at 30 °C, respectively. Therefore, these doped polyacetylenes may act as the new electrolyte materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 485–494  相似文献   

12.
Oligo(oxyethylene) chains cross‐linked 2,2’‐bithiophene (BT‐E5‐BT) has been synthesized successfully. A free‐standing copolymer film based on BT‐E5‐BT and 3,4‐ethylenedioxythiophene (P(BT‐E5‐BT‐co‐EDOT)) has been synthesized by electrochemical polymerization. The electrical conductivity of P(BT‐E5‐BT‐co‐EDOT) copolymer (16 S m?1) has improved by four orders of magnitude compared to the homopolymer of BT‐E5‐BT (P(BT‐E5‐BT), 5 × 10?3 S m?1) at room temperature. Both homopolymer and copolymer films exhibit well‐defined redox and satisfied coloration efficiency. Spectroelectrochemistry studies indicate that the P(BT‐E5‐BT‐co‐EDOT) has a lower band gap in the range of 1.83–1.90 eV and shows more plentiful electrochromic colours (green, blue, purple and salmon pink) compared with the homopolymer P(BT‐E5‐BT). The Copolymer P(BT‐E5‐BT‐co‐EDOT) shows the moderate optical contrast (26% of 480 nm) and coloration efficiency (205.41 cm?1 C?2). The copolymer method provides a novel way to fabricate a free‐standing organic electrochromic device. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1583–1592  相似文献   

13.
A series of 2‐(arylimino)benzylidene‐9‐arylimino‐5,6,7,8‐tetrahydrocyclohepta[b] pyridyliron(II) chlorides was synthesized and characterized using FT‐IR and elemental analysis, and the molecular structures of complexes Fe3 and Fe4 have been confirmed by the single‐crystal X‐ray diffraction as a pseudo‐square‐pyramidal or distorted trigonal‐bipyramidal geometry around the iron core. On activation with methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all iron precatalysts exhibited high activities toward ethylene polymerization with a marvelous thermo‐stability and long lifetime. The Fe4 /MAO system showed highest activity of 1.56 × 107 gPE·mol?1(Fe)·h?1 at 70 °C, which is one of the highest activities toward ethylene polymerization by iron precatalysts. Even up to 80 °C, Fe3 /MAO system still persist high activity as 6.87 × 106 g(PE)·mol?1(Fe)·h?1, demonstrating remarkable thermal stability for industrial polymerizations (80–100 °C). This was mainly attributing to the phenyl modification of the framework of the iron precatalysts. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 830–842  相似文献   

14.
《Electroanalysis》2005,17(8):713-718
Five plastic membrane Pb2+‐selective electrodes were prepared based on 1,4‐bis(N‐tosyl‐o‐aminophenoxy)butane I , 1,4‐bis(N‐allyl‐N‐tosyl‐o‐aminophenoxy)butane II , 1,4‐bis(N‐benzyl‐N‐tosyl‐o‐aminophenoxy)butane III , 1,4‐bis[N‐(o‐allyloxybenzyl)‐N‐tosyl‐o‐aminophenoxy]butane IV , and 1,4‐bis(N‐octyl‐N‐tosyl‐o‐aminophenoxy)butane V as neutral carriers. The electrodes exhibited nearly Nernstian responses over the concentration ranges, 2.5×10?4–4.0×10?2, 2.5×10?5–4.0×10?2, 7.9×10?5–4.0×10?2, 2.2×10?5–4.0×10?2, and 1.9×10?4–4.0×10?2 M for electrodes composed with the ionophores I–V , respectively. All electrodes showed pH range of about 4.0 to 11.5 and working temperature range of 22 to 70 °C with isothermal temperature coefficients of 1.19×10?3, 1.16×10?3, 1.16×10?3, 1.00×10?3 , and 1.32×10?3 V/°C for electrodes I–V respectively.  相似文献   

15.
A series of novel liquid‐crystalline copolymers based on fluorene and triphenylamine‐containing oligo(p‐phenylenevinylene) derivatives have been synthesized according to the Suzuki polymerization method. The structures, optical and electrochemical properties of the copolymers were characterized by 1H NMR, 13C NMR, GPC, UV–vis, photoluminescence (PL) spectroscopy, and cyclic voltammetry (CV), respectively. The thermotropic phase behavior of the copolymers was investigated by using differential scanning calorimetry (DSC) and polarized optical microscope (POM). All of the copolymers exhibit thermally liquid crystalline properties and represent the characteristic Schlieren textures in a wide temperature range. The effects of the concentrations and chain length of the oligo(phenylenevinylene) units on the thermal properties, liquid crystalline, photo‐ and electroluminescent properties of the copolymers have been investigated in details. Among the copolymers‐based devices with a configuration of ITO/PEDOT:PSS/polymers/Ca/Al, the device based on PF‐LOPV05 exhibits the lowest turn‐on voltage of 3 V and the maximum brightness of 210 cd/m2 at 8.3 V. A single layer device based on the blend of PF/PF‐LOPV05 emits white electroluminescence with CIE coordinates of (0.30, 0.35) at 8 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3296–3308, 2009  相似文献   

16.
《Electroanalysis》2005,17(11):1003-1007
A novel PVC membrane ion‐selective electrode based on tribenzyltin(IV) dithiocarbamate [Sn(IV)–TBDTB] as neutral carrier was developed for thiocyanate (SCN?) determination. The electrode exhibits a near‐Nernstian response for SCN? with a slope of 62.8±2.0 mV per decade over a wide concentration range 1.0×10?1–2.0×10?6 mol L?1 and a detection limit of 1.0×10?6 mol L?1 in MES–NaOH buffer, pH 6.0, at 25 °C. The electrode prepared with 1.5 wt.% Sn(IV)–TBDTB, 32.5 wt.% PVC and 66.0 wt.% 2‐nitrophenyloctyl ether (o‐NPOE) shows optimal response characteristics. Anti‐Hofmeister selectivity sequence for a series of anions shown by the electrode was as follows: SCN?>Sal?>I?>ClO >phCOO?>CH3COO?>Br?>Cl?>NO >NO >Citrate>SO42?. The useful pH range for the electrode was found to be 3–7 with a response time 30–40 s. The electrode has been used for direct determination of thiocyanate in wastewater with satisfactory results.  相似文献   

17.
A series of blue‐light‐emitting oligo(fluorenyleneethynylenesilylene)s (OFESs) of the general formula HC?CRC?C(EC?CRC?C)mEC?CRC?CH (E = SiPh2, SiMe2, or SiMe2? SiMe2; m = 0–2; R = 9,9‐dihexylfluorene‐2,7‐diyl) and their phosphorescent platinum‐containing oligoynes and polyynes were synthesized and characterized. The solution properties and regiochemical structures of this new structural class of organosilicon‐based polyplatinayne polymers {trans‐[? Pt(PBu3)2C ?CRC?C(EC?CRC?C)mEC?CRC?C? ]n} were studied with IR and NMR (1H, 13C, 29Si, and 31P) spectroscopy. The optical absorption and photoluminescence spectra of these metallopolymers were examined and compared with their discrete oligomeric model complexes. Our studies led to a novel approach of using the sp3‐silyl moiety as a conjugation interrupter to limit the effective conjugation length in metal polyynes, which could boost the phosphorescence decay rates essential for light‐energy harvesting from the triplet excited state. The influence of the heavy platinum atom and the group 14 silyl unit possessing different side‐group substituents on the thermal and phosphorescence properties was investigated in detail. We also established the goal of studying the evolution of the lowest singlet and triplet excited states with chain length m of OFESs and the nature of E in these metallopolymers. This work indicated that the phosphorescence emission efficiency harnessed through the heavy‐atom effect of platinum in the main chain did not change very much with oligomer chain length m but generally decreased with the E group in the order SiMe2 > SiMe2? SiMe2 > SiPh2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4804–4824, 2006  相似文献   

18.
New amorphous semiconducting copolymers, poly(9,9‐dialkylfluorene)‐alt‐(3‐dodecylthienyl‐divinylbenzene‐3‐dodecylthienyl) derivatives (PEFTVB and POFTVB), were designed, synthesized, and characterized. The structure of copolymers was confirmed by H NMR, IR, and elemental analysis. The copolymers showed very good solubility in organic solvents and high thermal stability with high Tg of 178–185 °C. The weight average molecular weight was found to be 107,900 with polydispersity of 3.14 for PEFTVB and 76,700 with that of 3.31 for POFTVB. UV–vis absorption studies showed the maximum absorption at 428 nm (in solution) and 435 nm (in film) for PEFTVB and at 430 nm (in solution) and 436 nm (in film) for POFTVB. Photoluminescence studies showed the emission at 498 nm (in solution) and 557 nm (in film) for PEFTVB and at 498 nm (in solution) and 536 nm (in film) for POFTVB. The solution‐processed thin‐film transistors showed the carrier mobility of 2 × 10?4 cm2 V?1 s?1 for PEFTVB‐based devices and 2 × 10?5 cm2 V?1 s?1 for POFTVB‐based devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3942–3949, 2010  相似文献   

19.
A series of new phenothiazylene vinylene‐based semiconducting polymers, poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene] ( P1 ), poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐1,4‐phenylene vinylene] ( P2 ), and poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐2,5‐thienylene vinylene] ( P3 ), have been synthesized via a Horner‐Emmons reaction. FTIR and 1H NMR spectroscopies confirmed that the configurations of the vinylene groups in the polymers were alltrans (E). The weight‐averaged molecular weights (Mw) of P1 , P2 , and P3 were found to be 27,000, 22,000, and 29,000, with polydispersity indices of 1.91, 2.05, and 2.25, respectively. The thermograms for P1 , P2 , and P3 each contained only a broad glass transition, at 129, 167, and 155 °C, respectively, without the observation of melting features. UV–visible absorption spectra of the polymers showed two strong absorption bands in the ranges 315–370 nm and 450–500 nm, which arose from absorptions of the phenothiazine segments and the conjugated main chains. Solution‐processed field‐effect transistors fabricated from these polymers showed p‐type organic thin‐film transistor characteristics. The field‐effect mobilities of P1 , P2 , and P3 were measured to be 1.0 × 10?4, 3.6 × 10?5, and 1.0 × 10?3 cm2 V?1 s?1, respectively, and the on/off ratios were in the order of 102 for P1 and P2 , and 103 for P3 . Atomic force microscopy and X‐ray diffraction analysis of thin films of the polymers show that they have amorphous structures. A photovoltaic device in which a P3 /PC71BM (1/5) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.42 V, a short circuit current (JSC) of 5.17 mA cm?2, a fill factor of 0.35, and a power conversion efficiency of 0.76% under AM 1.5 G (100 mW cm?2) illumination. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 635–646, 2010  相似文献   

20.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号