首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The surface excitation parameter (SEP) is theoretically determined for different polymers, namely, polyethylene (PE), polystyrene (PS), polyacetylene (PA) and polymethyl methacrylate (PMMA), for electron energies between 300 and 5000 eV and for angles between 0 and 70o to the surface normal. We use our previous definition of SEP as the change in excitation probability of an electron caused by the presence of the surface in comparison with an electron moving in an infinite medium. The calculations are performed within the dielectric response theory by means of the QUEELS‐ε(k, ω)‐ REELS software determining the energy‐differential inelastic electron scattering cross‐sections for reflection‐electron‐energy‐loss spectroscopy (REELS). More precisely, the volume component for an infinite medium is subtracted from the calculated REELS cross‐section and in this way the surface excitation component of the cross‐section is determined and the SEP calculated. We find that the presence of an energy band gap reduces the SEP values compared to those for metals, and this decrease is larger for polymers with larger gaps. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The surface excitation parameter (SEP) is theoretically calculated for 12 semiconductors (GaN, GaP, GaSb, GaAs, InSb, InAs, InP, SiC, ZnSe, ZnS, Si and Ge) and for Ni (which is usually used as a reference in experiments) for electron energies between 300 eV and 3400 eV, and for angles between 0° and 70° to the surface normal. We use our previous definition of SEP, as the change in excitation probability, for an electron, caused by the presence of the surface in comparison with an electron moving the same distance in an infinite medium. The calculations are performed within the dielectric response theory by means of the QUEELS‐ε(k, ω)‐REELS software determining the energy‐differential inelastic electron scattering cross‐sections for reflection‐electron‐energy‐loss spectroscopy (REELS), and for which the only input is the dielectric function of the medium. By fitting to these SEP values as well as our previous ones, i.e. from 27 materials, including metals, oxides, polymers and semiconductors, we also establish a simple equation depending on the generalized plasmon energy and the energy band gap of the material which allows to estimate the SEP when the dielectric function is not available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A Monte Carlo simulation including surface excitation, Auger electron‐ and secondary electron production has been performed to calculate the energy spectrum of electrons emitted from silicon in Auger electron spectroscopy (AES), covering the full energy range from the elastic peak down to the true‐secondary‐electron peak. The work aims to provide a more comprehensive understanding of the experimental AES spectrum by integrating the up‐to‐date knowledge of electron scattering and electronic excitation near the solid surface region. The Monte Carlo simulation model of beam–sample interaction includes the atomic ionization and relaxation for Auger electron production with Casnati's ionization cross section, surface plasmon excitation and bulk plasmon excitation as well as other bulk electronic excitation for inelastic scattering of electrons (including primary electrons, Auger electrons and secondary electrons) through a dielectric functional approach, cascade secondary electron production in electron inelastic scattering events, and electron elastic scattering with use of Mott's cross section. The simulated energy spectrum for Si sample describes very well the experimental AES EN(E) spectrum measured with a cylindrical mirror analyzer for primary energies ranging from 500 eV to 3000 eV. Surface excitation is found to affect strongly the loss peak shape and the intensities of the elastic peak and Auger peak, and weakly the low energy backscattering background, but it has less effect to high energy backscattering background and the Auger electron peak shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We calculated a local inverse inelastic mean free path (local-IIMFP) for electrons crossing a medium–medium interface, considering various incident electron energies, crossing angles and combinations of materials. We used an extension of a classical dielectric model developed by Li and co-workers for an electron crossing a surface (interface vacuum-medium). Moreover, the integration over the distance of the local-IIMFP allows to obtain the interface excitation parameter (or IEP) characterizing the change in excitation probability for an electron crossing an interface once caused by the presence of the interface in comparison with an electron for which only volume excitations are considered. We perform these calculations for angles between 0° and 80°, for electron energies between 500 and 2500 eV and for various pairs of materials, as Al/In for its academic interest or Au/Si and SiO2/Si for their technological importance. Small but not negligible variations of the local-IIMFP and the IEP were observed for metal–metal or metal–semiconductor interfaces, while quite significant variations are obtained when one of the materials is a insulator.  相似文献   

6.
Electron inelastic mean free path (IMFP) is an important parameter for surface chemical quantification by surface electron spectroscopy techniques. It can be obtained from analysis of elastic peak electron spectroscopy (EPES) spectra measured on samples and a Monte Carlo simulation method. To obtain IMFP parameters with high accuracy, the surface excitation effect on the measured EPES spectra has to be quantified as a surface excitation parameter (SEP), which can be calculated via a dielectric response theory. However, such calculated SEP does not include influence of elastic scattering of electrons inside samples during their incidence and emission processes, which should not be neglected simply in determining IMFP by an EPES method. In this work a Monte Carlo simulation method is employed to determine surface excitation parameter by taking account of the elastic scattering effect. The simulated SEPs for different primary energies are found to be in good agreement with the experiments particularly for larger incident or emission angles above 60° where the elastic scattering effect plays a more important role than those in smaller incident or emission angles. Based on these new SEPs, the IMFP measurement by EPES technique can provide more accurate data.  相似文献   

7.
N2的解离化学吸附是工业合成氨的速控步骤.基于最近构建的六维势能面,本文研究了N2的初始振动激发和转动激发在Fe(111)表面的反应性的作用.由于该反应具有重要的量子效应,通过六维量子动力学计算研究了入射能量低于1.6 eV时振动激发的效应.并采用准经典轨线计算揭示了高入射能量下的振动和转动激发的影响.通过这些研究发现增加平动能量在一定程度上能提高解离几率,振动激发或转动激发能更有效地促进解离.这项研究为重原子分子-表面反应的模式特异性动力学提供了有价值的见解.  相似文献   

8.
In this work we use the unitarized distorted wave method to study the effect of multi‐channel coupling on the calculated electronic excitation cross sections in H2. Specifically, such an effect for electronic excitations leading to the excited states b3∑, a3∑, and c3u for incident energies varying from 15 to 60 eV is studied. Our results have shown that converged cross sections can be obtained with the inclusion of only triplet intermediate states, except for energies near the excitation thresholds, where the inclusion of singlet intermediate states is important. Also, convergence improves with increasing energies for all excitations considered. Comparison of our calculated cross sections with available experimental and other theoretical results is encouraging. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

9.
The structural and electronic properties of fluorene‐phenylene copolymer (FP)n, n = 1–4 were studied by means of quantum chemical calculations based on density functional theory (DFT) and time dependent density functional theory (TD‐DFT) using B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest singlet excited state. It was found that (FP)n is nonplanar in its ground state while the electronic excitations lead to planarity in its S1 state. Absorption and fluorescence energies were calculated using TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods. Vertical excitation energies and fluorescence energies were obtained by extrapolating these values to infinite chain length, resulting in extrapolated values for vertical excitation energy of 2.89 and 2.87 eV, respectively. The S1 ← S0 electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is distinguishing in terms of oscillator strength. Fluorescence energies of (FP)n calculated from TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods are 2.27 and 2.26 eV, respectively. Radiative lifetimes are predicted to be 0.55 and 0.51 ns for TD‐B3LYP/SVP and TD‐B3LYP/SVP+ calculations, respectively. These fundamental information are valuable data in designing and making of promising materials for LED materials. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
Reflection electron energy loss spectra (REELS) were measured for five insulating organic compounds: Kapton, polyethylene (PE), poly(methyl methacrylate) (PMMA), polystyrene (PS) and polytetrafluoroethylene (PTFE), as well as for Ni and Si, in the energy range between 200 and 1600 eV. The average number of surface excitations for a single surface crossing were determined from the experimental data and were found to be considerably smaller than for earlier studied materials, which mainly consisted of elemental metals [Surf. Sci. 486(2001)L461]. The surface excitation parameter, a material parameter used to quantify the relative intensity of surface losses in (photo)electron spectroscopy, was extracted from the data and compared with values found in the literature. The results indicate that surface excitations only have a minor influence on quantification of XPS spectra of polymers. On the other hand, a correction for surface excitations turns out to be essential for measurements of the electron inelastic mean free path of polymers when a metal is used as reference material.  相似文献   

11.
A theoretical method to determine the so‐called surface excitation parameter (SEP) is presented. This method is based on the modelling of reflection‐electron‐energy‐loss spectroscopy and more particularly on the analysis of energy‐differential inelastic electron scattering cross sections calculated within the model. The SEP is extracted from theoretical cross‐section spectrum by calculating the ratio between the surface loss component of the spectrum and the elastic peak intensity. The calculations have been performed entirely with the dielectric function, using the software QUEELS (Quantitative analysis of Electron Energy Losses at Surfaces) recently developed by Yubero and Tougaard [Surf. Interface Anal. 2004; 36 : 824]. The angular distribution of SEP is calculated for angles between 10° and about 70° for aluminium and silicon. We propose also an extension of the method for materials (e.g. copper) that do not present clear surface and volume plasmons. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A new analysis of reflection electron energy‐loss spectroscopy (REELS) spectra is presented. Assuming inelastic scattering in the bulk to be quantitatively understood, this method provides the distribution of energy losses in a single surface excitation in absolute units without the use of any fitting parameters. For this purpose, REELS spectra are decomposed into contributions corresponding to surface and volume excitations in two steps: first the contribution of multiple volume excitations is eliminated from the spectra and subsequently the distribution of energy losses in a single surface scattering event is retrieved. This decomposition is possible if surface and bulk excitations are uncorrelated, a condition that is fulfilled for medium‐energy electrons because the thickness of the surface scattering layer is small compared with the electron elastic mean free path. The developed method is successfully applied to REELS spectra of several materials. The resulting distributions of energy losses in an individual surface excitation are in good agreement with theory. In particular, the so‐called begrenzungs effect, i.e. the reduction of the intensity of bulk losses due to coupling with surface excitations near the boundary of a solid‐state plasma, becomes clearly observable in this way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A mixture of cis and trans 1,3,5-hexatriene has been studied by electron impact at incident electron energies of 20 eV, 40 eV, 50 eV, and 70 eV, at scattering angles from 0° to 80°, and with effective energy resolutions in the range from 0.05 eV to 0.15 eV. Singlet → triplet transitions with maximum intensities at 2.61 eV and 4.11 eV are observed. The lowest energy spin-allowed excitation which can be detected is the electric dipole-allowed X1 Ag → 1 1Bu transition (in the notation appropriate for the trans isomer). No evidence has been found for a spin-allowed but symmetry-forbidden X1 Ag → 2 1Ag excitation in the vicinity of 4.4 eV transition energy. Many other spin-allowed excitations are observed in the 6–11 eV energy-loss region, and the correlation between these features and those observed in high resolution ultraviolet absorption spectra and other electron-impact spectra is discussed.  相似文献   

14.
A number of benchmark studies investigating the performance of quantum chemical methods for calculating vertical excitation energies are today available in the literature. However, less established is the variation between methods in their estimates of the differences between vertical, adiabatic, and 0‐0 excitation energies. To this end, such excitation energies are here calculated for the bright S1 states of the anionic chromophores of the photoactive yellow protein (PYP) and the green fluorescent protein (GFP) in the gas phase using configuration interaction singles, complete active space self‐consistent field, coupled‐cluster singles and doubles, and time‐dependent density functional theory methods. Although the estimates of the excitation energies vary by more than 1 eV between the methods, the differences between the different types of excitation energies are found to be relatively method‐insensitive, varying by ~0.1 eV only for these particular chromophores. Specifically, the adiabatic energies are uniformly 0.10–0.17 (PYP) and 0.06–0.17 eV (GFP) lower than the vertical energies, and the 0‐0 energies are similarly 0.09–0.14 (PYP) and 0.07–0.17 eV (GFP) lower than the adiabatic energies. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
In this work, using our vibrational variational calculation method and a recently derived refined quartic potential energy surface for S0 thiophosgene, we have carried out large scale vibrational calculations to analyze the vibrational structure of this electronic state in the whole range of vibrational excitation energies down from the origin and up to the dissociation limit (at ↼20,000 cm↙1). In the lower excited vibrational range we have achieved satisfactory coincidence of calculated to experimentally measured frequencies, while at the higher vibrational excitations our main objective has been to estimate what part of the available vibrational level density is effectively involved into the vibrational mixing and IVR. The results from our calculations have been compared to the available experimentally obtained dataset (obtained from synchrotron IR, SEP and LIF spectra) as well as to conclusions from the analyses by other authors using local coupling models.  相似文献   

16.
In the wavelength region 1850–9000 Å radiation from H, C and CH fragments is observed as a result of the dissociative excitation of benzene by electron impact (0–1000 eV). Emission cross sections and threshold energies have been determined for the Balmer series of the hydrogen atom and the A2Δ - X2Π emission of the CH fragment.  相似文献   

17.
A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas.  相似文献   

18.
We outline a theory of UV and higher-energy photoemission spectroscopy of chemisorbed atoms, that aims at the accurate calculation of inner electron binding energies and photoabsorption cross sections by including solid state and localized relativistic and correlation effects. It is based on an “atom on (in) solids” approach where one first extracts a surface potential and then uses it in a coupled Hartree–Fock theory to obtain self-consistently the shifts and splittings of atomic levels. A first application of this theoretical program has been carried out on Na on the Al(100) system, by calculating from first principles the binding energies of the Na 1s and 2s electrons. For a coverage of 1.23 × 1014 adatoms/cm2 we find BE (1s) = 1075.2 eV and BE (2s) = 66.2 eV. Also, the Na 2p orbitals are found to split in the cylindrical symmetry by about 0.2 eV.  相似文献   

19.
Luminescent materials consisting of boron clusters, such as carboranes, have attracted immense interest in recent years. In this study, luminescent organic–inorganic conjugated systems based on o‐carboranes directly bonded to electron‐donating and electron‐accepting π‐conjugated units were elaborated as novel optoelectronic materials. These o‐carborane derivatives simultaneously possessed aggregation‐induced emission (AIE) and thermally activated delayed fluorescence (TADF) capabilities, and showed strong yellow‐to‐red emissions with high photoluminescence quantum efficiencies of up to 97 % in their aggregated states or in solid neat films. Organic light‐emitting diodes utilizing these o‐carborane derivatives as a nondoped emission layer exhibited maximum external electroluminescence quantum efficiencies as high as 11 %, originating from TADF.  相似文献   

20.
Non-dipole S 2p and S 2s core excitation of SF6 has been studied using inelastic electron scattering with variable scattering angles and impact energies (momentum transfer (K), 0.9<K2<113 a.u.−2). A non-dipole excitation at 181 eV is found to be the dominant S 2p spectral feature at large momentum transfer. A variable impact energy, fixed-K study shows that the first Born approximation fails under low impact energy, large scattering angle conditions. This study illustrates the importance of exploring a wide range of the inelastic scattering surface to ensure proper understanding of molecular spectroscopy and scattering dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号