首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Gold nanoparticles (AuNPs) with 14, 25 and 40nm diameters were functionalized with different chain length (C6, C8, C11 and C16) carboxylic acid terminated alkanethiol self-assembled monolayers (COOH-SAMs). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to examine the changes in surface chemistry as both AuNP diameter and SAM chain length were varied. COOH-SAMs on flat gold surfaces were also examined and compared to the COOH-SAM on AuNP results. For a given surface, as the COOH-SAM chain length increased the XPS C/Au atomic ratio increased due to an increased number of carbon atoms per molecule in the overlayer and an increased attenuation of the Au substrate signal. For the C16 COOH-SAMs, as the size of AuNPs decreased the XPS C/Au atomic ratio and the apparent SAM thickness increased due to the increased curvature of the smaller AuNPs. The C16 COOH-SAMs on the flat Au had the lowest XPS C/Au atomic ratio and apparent SAM thickness of any C16 COOH-SAM covered Au surface. The effective take-off angles of the COOH-SAMs were also calculated by comparing the apparent thickness of COOH-SAMs with literature values. The effective take-off angle for C16 COOH-SAM on 14nm, 25nm and 40nm diameter AuNPs and flat Au were found to be 57°, 53°, 51° and 39°, respectively, for data acquired in a mode that collects a wide range of photoelectron take-off angles. The effective take-off angle for C16 COOH-SAM on 14nm AuNP and flat Au decreased to 52° and 0°, respectively, for data acquired in a mode that collects a narrow range of photoelectron take-off angles. The ToF-SIMS results showed similar changes in surface chemistry with COOH-SAM chain length and AuNP size. For example, the ratio of the sum of the C(1-4)H(x)O(y) positive ion intensities to the sum of the Au-containing positive ions intensities increased with decreasing AuNP size and increasing COOH-SAM chain length. Fourier transform IR spectroscopy in the attenuated total reflectance mode (FTIR-ATR) was used to characterize the crystallinity of the COOH-SAMs. The CH(2) stretching frequencies decreased with increasing COOH-SAM chain length on flat Au. The C16 COOH-SAM on the 14nm AuNPs exhibited a crystalline-like CH(2) stretching frequency. The size, size distribution, shapes and solution stability of AuNPs were investigated with transmission electron microscopy (TEM) and UV/VIS spectroscopy. As the average diameter of the AuNPs decreased the size distribution became narrower and the shape became more spherical.  相似文献   

2.
The adsorption pattern of gold nanoparticles (AuNPs) on functionalized self-assembled monolayers (SAMs) produced on a Au(111) surface was characterized. The Au(111) was modified with 11-amino-1-undecanethiol hydrochloride (AUT), 11-mercapto-1-undecanol (MUT), or 11-mercaptoundecanoic acid (MUA) at an elevated temperature and pressure. The AuNPs aggregated on the AUT-SAM surface, whereas they were well dispersed on the MUT-SAM surface and localized on the MUA-SAM surface. The results suggest that interactions between AuNPs differ according to the degree of peeling of citrate-layer-capped AuNPs. The degree of peeling, which is related to both the surface randomness of the SAMs and the functional characteristics of the terminal group of each SAM, was discussed on the basis of scanning tunneling microscopy observations, X-ray photoelectron spectroscopic analyses, and contact angle measurements. Our study shows that AuNP patterns can be controlled by changing the terminal group of the alkyl thiol SAM on a Au(111) surface.  相似文献   

3.
Hydrogen sulfide (H2S) has emerged as an important gasotransmitter in diverse physiological processes, although many aspects of its roles remain unclear, partly owing to a lack of robust analytical methods. Herein we report a novel surface‐enhanced Raman scattering (SERS) nanosensor, 4‐acetamidobenzenesulfonyl azide‐functionalized gold nanoparticles (AuNPs/4‐AA), for detecting the endogenous H2S in living cells. The detection is accomplished with SERS spectrum changes of AuNPs/4‐AA resulting from the reaction of H2S with 4‐AA on AuNPs. The SERS nanosensor exhibits high selectivity toward H2S. Furthermore, AuNPs/4‐AA responds to H2S within 1 min with a 0.1 μM level of sensitivity. In particular, our SERS method can be utilized to monitor the endogenous H2S generated in living glioma cells, demonstrating its great promise in studies of pathophysiological pathways involving H2S.  相似文献   

4.
A simple preparation method of gold nanoparticles (AuNPs) with 4-acylamidobenzenethiol derivative (BD) was improved to obtain the larger size of AuNPs which exhibited localized surface plasmon resonance. The spectroscopic characterizations of two kinds of BD-stabilized AuNPs were carried out by means of ATR-FTIR and Raman spectroscopy in order to clarify the conformation and orientation of BDs adsorbed on AuNPs. The relation between the stability of AuNPs and the adsorbed states of BDs were also discussed. The average sizes of the resulting AuNPs were 18 nm for BD1 and 30 nm for BD2, respectively. It was found that the BD1-capped AuNPs formed large aggregates. The results of vibrational spectroscopy revealed that loosely packed self-assembled monolayer (SAM) of BD1 molecules was formed on the surface of the AuNPs; on the other hand, densely packed SAM was formed in the case of BD2. We concluded the difference behavior between the two types of molecules was caused by the functional groups. The sulfuryl groups of BD2 induced highly ordered SAM and suppressed aggregate formation of AuNPs.  相似文献   

5.
Here we report a facile way of stabilizing large gold nanoparticles (AuNPs) by mixed charged zwitterionic self-assembled monolayers (SAMs). The citrate-capped AuNPs with diameters ranging from 16 nm to even ~100 nm are well stabilized via a simple place exchange reaction with a 1:1 molar ratio mixture of negatively charged sodium 10-mercaptodecanesulfonic acid (HS-C10-S) and positively charged (10-mercaptodecyl)-trimethyl-ammonium bromide (HS-C10-N4). The 16 nm AuNPs protected by mixed charged zwitterionic SAMs not only show much better stability than the single negatively or positively charged AuNPs, but also exhibit exciting stability as well as those modified by monohydroxy (1-mercaptoundec-11-yl) tetraethylene glycol (HS-C11-EG4). Importantly, 16 nm AuNPs protected by mixed SAMs exhibit good stability in cell culture medium with 10% FBS and strong protein resistance, especially with excellent resistance against plasma adsorption. Moreover, the mixed charged zwitterionic SAMs are also able to well-stabilize larger AuNPs with a diameter of 50 nm, and to help remarkably improve their stability in saline solution compared with HS-C11-EG4 protected ones. When it comes to AuNPs with a diameter of 100 nm, the mixed charged zwitterionic SAM protected nanoparticles retain a smaller hydrodynamic diameter and even better long-term stability than those modified by mercaptopolyethylene glycol (M(w) = 2000, HS-PEG2000). The above results demonstrated that the mixed charged zwitterionic SAMs are able to have a similar effect on stabilizing the large gold nanoparticles just like the single-component zwitterionic SAMs. Concerning its ease of preparation, versatility, and excellent properties, the strategy based on the mixed charged zwitterionic SAM protection might provide a promising method to surface tailoring of nanoparticles for biomedical application.  相似文献   

6.
Neatly arranged gold nanoparticles (AuNPs) were directly electrodeposited on an electrochemically polymerized self‐assembled monolayer (SAM) of thiol‐functionalized 3,4‐ethylenedioxythiophene (EDOT) derivative, EDTMSHA. A thiolated single‐stranded DNA (ssDNA) aptamer with high specificity to LPS was immobilized on the AuNPs/conducting polymer composite film, serving as sensing platform for LPS detection. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscope (SEM), and atomic force microscopy (AFM) were utilized to characterize the modification and detection processes. The electron transfer resistance was found to have a linear relationship with LPS concentration from 0.1 pg/mL to 1 ng/mL.  相似文献   

7.
《Electroanalysis》2018,30(5):955-961
Herein, a sensitive electrochemical Pb2+ sensor was developed which based on DNA‐functionalized Au nanoparticles(AuNPs) and nanocomposite modified electrode. The DNA‐functionalized AuNPs includes two types of DNA, namely a Pb2+‐mediated DNAzyme comprising a biotin labeled‐enzyme DNA and a substrate strand DNA with a typical stem‐loop structure, and a ferrocene‐labeled linear signal DNA. Without Pb2+, the hairpin loop impeded biotin binding to avidin on the electrode. However,when the goal Pb2+ exists, the substratum strand was divided into two fragments that lead to the enzyme strand was substratumed on the electrode and biotin was admited by avidin, bringing about DNA‐functionalized AuNP(AuNPs) deposition on the electrode surface.The differential pulse voltammetry (DPV) was used to measure electrochemical response signals connect to signal DNA.For the amplification characters of the DNA‐functionalized AuNPs and nanocomposite, the electrochemical detection signal of Pb2+ was greatly improved and revealed high specificity. Under optimum conditions, the resultant biosensor bringed out a high sensitivity and selectivity for the determination of Pb2+. The proposed method was able to detect as low as picomolar Pb2+ concentrations.  相似文献   

8.
The enhanced antioxidant activity of surface‐functionalized gold nanoparticles (AuNPs) synthesized by self‐assembly has attracted great attention, but little is known about the mechanism behind the enhanced activity. To address this challenge, the antioxidant activity of Au@PEG3SA (i.e., surface‐functionalization of spherical AuNPs with the antioxidant salvianic acid A) was used as an example to illustrate the mechanism of the enhanced activity. Evaluation of the antioxidant activity was performed in a radical‐scavenging reaction between Au@PEG3SA and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical. As expected, the rate constant for the reaction of Au@PEG3SA with DPPH was about nine times greater than that for the salvianic acid A monomer. A comparative analysis of the spectral characteristics of Au@PEG3SA and the salvianic acid A monomer further imply that the enhancement of the antioxidative reaction kinetics may be ascribed to the variation in the transition state for the DPPH‐radical scavenging reaction through π–π stacking interactions between and among adjacent groups on the surface of Au@PEG3SA. On the other hand, the kinetic enhancement of Au@PEG3SA on reactive‐oxygen‐species (ROS) scavenging can be observed in living cells and in vivo, which possibly provides new insight for the bioapplication of self‐assembly of surface‐functionalized AuNPs.  相似文献   

9.
Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub‐10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface‐directed self‐assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface‐directed self‐assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol‐terminated polystyrene (PS‐SH) was dissolved in toluene and citrate‐stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS‐SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid–liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom‐transfer radical polymerization (ATRP) initiator. Poly[2‐(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface‐initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self‐assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.  相似文献   

10.
It is well known that there is a critical relationship between the surface composition and catalytic performance for a bimetallic catalyst. However, in most cases, the surface composition is obviously different from that of the bulk. Moreover, the surface is normally reconstructed under reaction conditions. In this personal account, our recent progresses in determining the surface compositions of oxide supported bimetal catalysts by high‐sensitivity low energy ion scattering spectroscopy (HS‐LEIS) and X‐ray photoemission spectroscopy (XPS) are summarized. Phase diagrams of the surface compositions under various conditions as a function of the bulk composition are established and compared. It is found that oxidation induces de‐alloying and enrichment of PdO, CuO, SnO2 on the surface, while H2 reduction results in re‐alloying. The addition of the second component not only modifies the nature of the active site, but also varies the dispersion of the active components. The support effects are discussed. The compared studies reveal that HS‐LEIS can achieve a more reliable surface composition for oxide supported catalysts.  相似文献   

11.
A cost‐effective and sensitive colorimetric method was described for the determination of chromium(III) ion (Cr3+) by using ethylenediaminetetraacetic acid functionalized gold nanoparticles (EDTA‐AuNPs) as a probe. The stable and dispersed EDTA‐AuNPs were prepared by reducing HAuCl4 with sodium borohydride in presence of EDTA as a capping agent. Upon the addition of Cr3+, the colour of EDTA‐AuNPs solution changed from red to violet, which was in response to the surface plasmon absorption of dispersed and aggregated EDTA‐AuNPs. The procedure allowed the determination of Cr3+ in the range of 0.1–1.0 mol/L. The limit of detection for Cr3+ was 0.08 mol/L. The relative standard deviation was 2.5 % for eight repeated measurements of 0.6 mol/L Cr3+ solution. The method was applied to the determination of Cr3+ in water samples.  相似文献   

12.
The design of high‐affinity lectin ligands is critical for enhancing the inherently weak binding affinities of monomeric carbohydrates to their binding proteins. Glyco‐gold nanoparticles (glyco‐AuNPs) are promising multivalent glycan displays that can confer significantly improved functional affinity of glyco‐AuNPs to proteins. Here, AuNPs are functionalized with several different carbohydrates to profile lectin affinities. We demonstrate that AuNPs functionalized with mixed thiolated ligands comprising glycan (70 mol %) and an amphiphilic linker (30 mol %) provide long‐term stability in solutions containing high concentrations of salts and proteins, with no evidence of nonspecific protein adsorption. These highly stable glyco‐AuNPs enable the detection of model plant lectins such as Concanavalin A, wheat germ agglutinin, and Ricinus communis Agglutinin 120, at subnanomolar and low picomolar levels through UV/Vis spectrophotometry and dynamic light scattering, respectively. Moreover, we develop in situ glyco‐AuNPs‐based agglutination on an oriented immobilized antibody microarray, which permits highly sensitive lectin sensing with the naked eye. In addition, this microarray is capable of detecting lectins presented individually, in other environmental settings, or in a mixture of samples. These results indicate that glyconanoparticles represent a versatile and highly sensitive method for detecting and probing the binding of glycan to proteins, with significant implications for the construction of a variety of platforms for the development of glyconanoparticle‐based biosensors.  相似文献   

13.
In this report, a label‐free electrochemical aptasensor for carcino‐embryonic antigen (CEA) was successfully developed based on a ternary nanocomposite of gold nanoparticles, hemin and graphene nanosheets (AuNPs‐HGNs). This nanocomposite was prepared by decorating gold nanoparticles on the surface of hemin functionalized graphene nanosheets via a simple wet‐chemical strategy. The aptamer can be assembled on the surface of AuNPs‐HGNs/GCE (glassy carbon electrode) through Au‐S covalent bond to form the sensing interface. Hemin absorbed on the graphene nanosheets not only acts as a protective agent of graphene sheets, but also as an in situ probe base on its excellent redox properties. Gold nanoparticles provide with both numerous binding sites for loading CEA binding aptamer (CBA) and good conductivity to promote the electron transfer. The current changes, which are caused by CEA specifically binding on the modified electrode, are exploited for the label‐free detection of CEA in a very rapid and convenient protocol. Therefore, the method has advantages of high sensitivity, wide linear range (0.0001–10 ng mL?1), low detection limit (40 fg mL?1) and attractive specificity. The results illustrate that the proposed label‐free electrochemical aptasensor has a potential application in the biological or clinical target analysis for its simple operation and low cost.  相似文献   

14.
p53 is a tumor‐suppressor protein related to the cell cycle and programmed cell apoptosis. Herein, dual‐targeting nanovesicles are designed for in situ imaging of intracellular wild‐type p53 (WTp53) and mutant p53 (MUp53). Nanovesicle‐encapsulated plasmonic gold nanoparticles (AuNPs) were functionalized with consensus DNA duplexes, and a fluorescein isothiocyanate (FITC)‐marked anti‐MUp53 antibody was conjugated to the nanovesicle surface. After entering the cytoplasm, the released AuNPs aggregated through recognition of WTp53 and the double‐stranded DNA. The color changes of AuNPs were observed using dark‐field microscopy, which showed the intracellular WTp53 distribution. The MUp53 location was detected though the immunological recognition between FITC‐labeled anti‐MUp53 and MUp53. Thus, a one‐step incubation method for the in situ imaging of intracellular WTp53 and MUp53 was obtained; this was used to monitor the p53 level under a drug treatment.  相似文献   

15.
Gold nanoparticles (AuNPs) prepared by citrate reduction of aurochloric acid (HAuCl4) were functionalized by tris(4‐sulfonatophenyl)porphinatoiron(III) (FeIIIP2) and poly(ethylene glycol) with thiolated arms (PEG‐SH). FeIIIP2 on the AuNP surface existed as its μ‐oxo dimer, which was reduced by Na2S2O4 to yield monomeric FeIIP2. FeIIP2‐bearing AuNPs were further functionalized through inclusion of two sulfonatophenyl groups of FeIIP2 by a per‐O‐methylated β‐cyclodextrin dimer with a pyridine linker (Py3CD) to obtain AuNPs capable of carrying diatomic molecules in the body. The resulting AuNPs (hemoCD‐AuNPs) bound O2 as well as CO in an aqueous solution. Although a noncolloidal 1:1 complex of 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphinatoiron(II) and Py3CD injected into the femoral vein of a rat was rapidly excreted in the urine, no excretion was observed with ferric hemoCD‐AuNPs, which were gradually accumulated in the spleen and liver of a rat. These results suggest that hemoCD‐AuNPs can be used as a carrier of diatomic molecules such as O2 and CO in vivo.  相似文献   

16.
With the transition to ≤28‐nm CMOS technology nodes, the surface analytical challenges with regard to steadily decreasing dimensions and still growing materials options raise the demand of high performing surface analysis techniques. Characterization of ultrathin films and multilayer stacks, especially in high‐k metal gate stacks, by means of low energy ion scattering spectroscopy (LEIS) with its monolayer sensitivity has been established as a very useful analysis technique next to Auger electron spectroscopy, X‐ray photoelectron spectroscopy , and time‐of‐flight secondary ion mass spectrometry. Questions regarding film nucleation, growth, coverage, and diffusion can be answered, thereby enabling those processes to be controlled appropriately. In this work, growth studies of ALD HfO2 and TiN are shown, as well as film thickness determination based on surface spectra. PVD aluminum and lanthanum, acting as work function metals on the gate oxide, were deposited, and their film formation and closure were investigated. Further application fields of LEIS have emerged from the characterization of in‐die features on patterned wafers. As presented on test arrays, it is possible to detect material deep in trenches. This is an advantage if residues need to be identified after etch or clean processes.  相似文献   

17.
Developing gold nanoparticles (AuNPs) with well‐designed functionality is highly desirable for boosting the performance and versatility of inorganic–organic hybrid materials. In an attempt to achieve ion recognition with specific signal expressions, we present here 4‐piperazinyl‐1,8‐naphthalimide‐functionalized AuNPs for the realization of quantitative recognition of FeIII ions with dual (colorimetric and fluorescent) output. The research takes advantage of 1) quantity‐controlled chelation‐mode transformation of the piperazinyl moiety on the AuNPs towards FeIII, thereby resulting in an aggregation–dispersion conversion of the AuNPs in solution, and 2) photoinduced electron transfer of a naphthaimide fluorophore on the AuNPs, thus leading to reversible absorption and emission changes. The functional AuNPs are also responsive to pH variations. This strategy for realizing the aggregation–dispersion conversion of AuNPs with returnable signal output might exhibit application potential for advanced nanoscale chemosensors.  相似文献   

18.
Resorcinarene‐functionalized gold nanoparticles (AuNPs) were prepared conveniently in aqueous solution in the presence of amphiphilic tetramethoxyresorcinarene tetraaminoamide. The obtained AuNPs were characterized and analyzed by UV‐vis, FT‐IR, XRD and TEM, respectively. The results showed that the size of AuNPs and the standard deviations were all decreasing with the increase of resorcinarene concentration. In addition, the catalytic activity of the obtained AuNPs in the reduction of aromatic nitro compounds was also investigated. In aqueous solution the reaction follows a first order kinetics and the size of AuNPs has influence on the rate of reduction.  相似文献   

19.
We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two‐dimensional films and three‐dimensional aggregates derived from N‐stearoyl‐L ‐alanine and N‐lauroyl‐L ‐alanine, respectively. The assemblies of N‐stearoyl‐L ‐alanine afforded stable films at the air–water interface. More compact assemblies were formed upon incorporation of AuNPs in the air–water interface of N‐stearoyl‐L ‐alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three‐dimensional assemblies of N‐lauroyl‐L ‐alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long‐range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze‐dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel–nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular‐level properties by means of manipulation of the information inscribed on the NP surface.  相似文献   

20.
Anionic polymerization technique has been utilized to synthesize a bilaterally sulfur‐functionalized polystyrene, SCH3‐polystyrene‐SH. The synthesis scheme consists of (1) initiation of 4‐vinylbenzylmethyl sulfide with sec‐butyllithium to form a living sulfur‐containing initiator, (2) polymerization of styrene, and (3) termination of growing polystyrene chain with ethylene sulfide. The resulting bilaterally sulfur‐functionalized polystyrene is used to make polystyrene/gold nanoparticles (AuNPs) nanocomposite with AuNPs formed in situ in polymer solution through reduction of AuClO4. The effects of the polymer/Au molar ratio as well as the molecular weight of polymer on the size and dispersion of formed AuNPs have been studied, and the superiority of bilaterally functionalized polymer to unilaterally functionalized polymer has been demonstrated. The polystyrene/AuNPs composite has been characterized by GPC, 1H‐NMR, 13C‐NMR, EDS, TEM, UV‐Vis, and DSC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1268–1277  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号