首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

2.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

3.
A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2971–2983  相似文献   

4.
This article describes a divergent strategy to prepare dendrimer‐like macromolecules from vinyl monomers through a combination of atom transfer radical polymerization (ATRP) and click reaction. Firstly, star‐shaped polystyrene (PS) with three arms was prepared through ATRP of styrene starting from a three‐arm initiator. Next, the terminal bromides of the star‐shaped PS were substituted with azido groups. Afterwards, the azido‐terminated star‐shaped PS was reacted with propargyl 2,2‐bis((2′‐bromo‐2′‐methylpropanoyloxy)methyl)propionate (PBMP) via click reaction. Star‐shaped PS with six terminal bromide groups was afforded and served as the initiator for the polymerization of styrene to afford the second‐generation dendrimer‐like PS. Iterative process of the aforementioned sequence of reactions could allow the preparation of the third‐generation dendrimer‐like PS. When the second‐generation dendrimer‐like PS with 12 bromide groups used as an initiator for the polymerization of tert‐butyl acrylate, the third‐generation dendrimer‐like block copolymer with a PS core and a poly (tert‐butyl acrylate) (PtBA) corona was afforded. Subsequently PtBA segments were selectively hydrolyzed with hydrochloric acid, resulting an amphiphilic branched copolymer with inner dendritic PS and outer linear poly(acrylic acid) (PAA). Following the same polymerization procedures, the dendrimer‐like PS and PS‐block‐PtBA copolymers of second generation originating from six‐arm initiator were also synthesized. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3330–3341, 2007  相似文献   

5.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

6.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

7.
The amphiphilic A2B star‐shaped copolymers of polystyrene‐b‐[poly(ethylene oxide)]2 (PS‐b‐PEO2) were synthesized via the combination of atom transfer nitroxide radical coupling (ATNRC) with ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP) mechanisms. First, a novel V‐shaped 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐PEO2 (TEMPO‐PEO2) with a TEMPO group at middle chain was obtained by ROP of ethylene oxdie monomers using 4‐(2,3‐dihydroxypropoxy)‐TEMPO and diphenylmethyl potassium as coinitiator. Then, the linear PS with a bromine end group (PS‐Br) was obtained by ATRP of styrene monomers using ethyl 2‐bromoisobutyrate as initiator. Finally, the copolymers of PS‐b‐PEO2 were obtained by ATNRC between the TEMPO and bromide groups on TEMPO‐PEO2 and PS‐Br, respectively. The structures of target copolymers and their precursors were all well‐defined by gel permeation chromatographic and nuclear magnetic resonance (1H NMR). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The star block copolymers with polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as side chains and hyperbranched polyglycerol (HPG) as core were synthesized by combination of atom transfer radical polymerization (ATRP) with the “atom transfer nitroxide radical coupling” (“ATNRC”) reaction. The multiarm PS with bromide end groups originated from the HPG core (HPG‐g‐(PS‐Br)n) was synthesized by ATRP first, and the heterofunctional PEO with α‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy group and ω‐hydroxyl group (TEMPO‐PEO) was prepared by anionic polymerization separately using 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) as parents compound. Then ATNRC reaction was conducted between the TEMPO groups in PEO and bromide groups in HPG‐g‐(PS‐Br)n in the presence of CuBr and pentamethyldiethylenetriamine (PMDETA). The obtained star block copolymers and intermediates were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, fourier transform‐infrared in detail. Those results showed that the efficiency of ATNRC in the preparation of multiarm star polymers was satisfactory (>90%) even if the density of coupling cites on HPG was high. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6754–6761, 2008  相似文献   

9.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

10.
This article reports the synthesis of the block and graft copolymers using peroxygen‐containing poly(methyl methacrylate) (poly‐MMA) as a macroinitiator that was prepared from the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in the presence of bis(4,4′‐bromomethyl benzoyl peroxide) (BBP). The effects of reaction temperatures on the ATRP system were studied in detail. Kinetic studies were carried out to investigate controlled ATRP for BBP/CuBr/bpy initiating system with MMA at 40 °C and free radical polymerization of styrene (S) at 80 °C. The plots of ln ([Mo]/[Mt]) versus reaction time are linear, corresponding to first‐order kinetics. Poly‐MMA initiators were used in the bulk polymerization of S to obtain poly (MMA‐b‐S) block copolymers. Poly‐MMA initiators containing undecomposed peroygen groups were used for the graft copolymerization of polybutadiene (PBd) and natural rubber (RSS‐3) to obtain crosslinked poly (MMA‐g‐PBd) and poly(MMA‐g‐RSS‐3) graft copolymers. Swelling ratio values (qv) of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H NMR), gel‐permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1364–1373, 2010  相似文献   

11.
The polymerization of MMA, at ambient temperature, mediated by dansyl chloride is investigated using controlled radical polymerization methods. The solution ATRP results in reasonably controlled polymerization with PDI < 1.3. The SET‐LRP polymerization is less controlled while SET‐RAFT polymerization is controlled producing poly(methyl methacrylate) (PMMA) with the PDI < 1.3. In all the cases, the polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The R group in the CTAs do not appear to play a key role in controlling the propagation rate. SET‐RAFT method appears to be a simpler tool to produce methacrylate polymers, under ambient conditions, in comparison with ATRP and SET‐LRP. Fluorescent diblock copolymers, P(MMA‐b‐PhMA), were synthesized. These were highly fluorescent with two distinguishable emission signatures from the dansyl group and the phenanthren‐1‐yl methacrylate block. The fluorescence emission spectra reveal interesting features such as large red shift when compared to the small molecule. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The novel trifunctional initiator, 1‐(4‐methyleneoxy‐2,2,6,6‐tetramethylpip‐eridinoxyl)‐3,5‐bi(bromomethyl)‐2,4,6‐trimethylbenzene (TEMPO‐2Br), was successfully synthesized and used to prepare the miktoarm star amphiphilic poly(styrene)‐(poly(N‐isopropylacrylamide))2 (PS(PNIPAAM)2) via combination of atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMRP) techniques. Furthermore, the star amphiphilic block copolymer, poly (styrene)‐(poly(N‐isopropylacrylamide‐b‐4‐vinylpyridine))2 (PS(PNIPAAM‐b‐P4VP)2), was also prepared using PS(PNIPAAM)2 as the macroinitiator and 4‐vinylpyridine as the second monomer by ATRP method. The obtained polymers were well‐defined with narrow molecular weight distributions (Mw/Mn ≤ 1.29). Meanwhile, the self‐assembly behaviors of the miktoarm amphiphilic block copolymers, PS(PNIPAAM)2 and PS(PNIPAAM‐b‐P4VP)2, were also investigated. Interestingly, the aggregate morphology changed from sphere‐shaped micelles (4.7 < pH < 3.0) to a mixture of spheres and rods (1.0 < pH < 3.0), and rod‐shaped nanorods formed when pH value was below 1.0. The LCST of PS(PNIPAAM)2 (pH = 7) was about 31 °C and the LCST of PS(PNIPAAM‐b‐P4VP)2 was about 35 °C (pH = 3). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6304–6315, 2009  相似文献   

13.
Different diblock copolymers constituted by one segment of a monomer supporting a reactive functional group, like allyl methacrylate (AMA), were synthesized by atom transfer radical polymerization (ATRP). Bromo‐terminated polymers, like polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(butyl acrylate) (PBA) were employed as macroinitiators to form the other blocks. Copolymerizations were carried out using copper chloride with N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as the catalyst system in benzonitrile solution at 70 °C. At the early stage, the ATRP copolymerizations yielded well‐defined linear block copolymers. However, with the polymerization progress a change in the macromolecular architecture takes place due to the secondary reactions caused by the allylic groups, passing to a branched and/or star‐shaped structure until finally yielding gel at monomer conversion around 40% or higher. The block copolymers were characterized by means of size exclusion chromatography (SEC), 1H NMR spectroscopy, and differential scanning calorimetry (DSC). In addition, one of these copolymers, specifically P(BA‐b‐AMA), was satisfactorily modified through osmylation reaction to obtain the subsequent amphiphilic diblock copolymer of P(BA‐b‐DHPMA), where DHPMA is 2,3‐dihydroxypropyl methacrylate; demonstrating the feasibility of side‐chain modification of the functional obtained copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3538–3549, 2007  相似文献   

14.
We successfully synthesized poly(l ‐lactide)‐b‐poly (methyl methacrylate) diblock copolymers at ambient temperature by combining ultraviolet light‐induced copper‐catalyzed ATRP and organo‐catalyzed ring‐opening polymerization (ROP) in one‐pot. The polymerization processes were carried out by three routes: one‐pot simultaneous ATRP and ROP, one‐pot sequential ATRP followed by ROP, and one‐pot sequential ROP followed by ATRP. The structure of the block copolymers is confirmed by nuclear magnetic resonance and gel permeation chromatography, which suggests that the polymerization method is facile and attractive for preparing block copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 699–704  相似文献   

15.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   

16.
A dual initiator (4‐hydroxy‐butyl‐2‐bromoisobutyrate), that is, a molecule containing two functional groups capable of initiating two polymerizations occurring by different mechanisms, has been prepared. It has been used for the sequential two‐step synthesis of well‐defined block copolymers of polystyrene (PS) and poly(tetrahydrofuran) (PTHF) by atom transfer radical polymerization (ATRP) and cationic ring‐opening polymerization (CROP). This dual initiator contains a bromoisobutyrate group, which is an efficient initiator for the ATRP of styrene in combination with the Cu(0)/Cu(II)/N,N,N,N,N″‐pentamethyldiethylenetriamine catalyst system. In this way, PS with hydroxyl groups (PS‐OH) is formed. The in situ reaction of the hydroxyl groups originating from the dual initiator with trifluoromethane sulfonic anhydride gives a triflate ester initiating group for the CROP of tetrahydrofuran (THF), leading to PTHF with a tertiary bromide end group (PTHF‐Br). PS‐OH and PTHF‐Br homopolymers have been applied as macroinitiators for the CROP of THF and the ATRP of styrene, respectively. PS‐OH, used as a macroinitiator, results in a mixture of the block copolymer and remaining macroinitiator. With PTHF‐Br as a macroinitiator for the ATRP of styrene, well‐defined PTHF‐b‐PS block copolymers can be prepared. The efficiency of PS‐OH or PTHF‐Br as a macroinitiator has been investigated with matrix‐assisted laser desorption/ionization time‐of‐flight spectroscopy, gel permeation chromatography, and NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3206–3217, 2003  相似文献   

17.
This investigation reported the preparation of fluorinated and nonamphiphilic well‐defined poly(styrene)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PS‐b‐PHFBMA) diblock copolymers via atom transfer radical polymerization (ATRP). Their chemical composition, structure, and bulk morphology were thoroughly investigated. In addition, their self‐assembly behavior in a dilute organic mixture solution was investigated. It was found that that the ATRP could be used to prepare the well‐defined fluorinated and nonamphiphilic PS‐b‐PHFBMA diblock copolymers in a controlled manner. The results also showed that abundant morphologies including sphere, worm‐like structure, and vesicle could be formed with different volume ratios of these two solvents, which proves that the nonamphiphilic fluorinated diblock copolymers can self‐assemble in a dilute solution, and the aforementioned reason for self‐assembly was also discussed preliminarily in this work. Finally, the effect of temperature on the aggregates was investigated to verify whether the self‐assembly behavior was to some extent temperature sensitive. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Living‐radical polymerization of acrylates were performed under emulsion atom transfer radical polymerization (ATRP) conditions using latexes prepared by a nanoprecipitation technique previously employed and optimized for the polymerization of styrene. A macroinitiator of poly(n‐butyl acrylate) prepared under bulk ATRP was dissolved in acetone and precipitated in an aqueous solution of Brij 98 to preform latex particles, which were then swollen with monomer and heated. Various monomers (i.e. n‐butyl acrylate, styrene, and tert‐butyl acrylate) were used to swell the particles to prepare homo‐ and block copolymers from the poly(n‐butyl acrylate) macroinitiator. Under these conditions latexes with a relatively good colloidal stability were obtained. Furthermore, amphiphilic block copolymers were prepared by hydrolysis of the tert‐butyl groups and the resulting block copolymers were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bulk morphologies of the polystyrene‐b‐poly(n‐butyl acrylate) and poly(n‐butyl acrylate)‐b‐poly(acrylic acid) copolymers were investigated by atomic force microscopy (AFM) and small angle X‐ray scattering (SAXS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 625–635, 2008  相似文献   

19.
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350  相似文献   

20.
The copolymer of polystyrene‐block‐poly(ethylene oxide)‐block‐poly (tert‐butyl acrylate) (PS‐b‐PEO‐b‐PtBA) was prepared, the synthesis process involved ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and atom transfer radical polymerization (ATRP), and 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) was used as parent compound. The PEO precursors with α‐hydroxyl‐ω‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end groups(TEMPO‐PEO‐OH) were first obtained by ROP of EO using HTEMPO and diphenylmethylpotassium (DPMK) as the coinitiator. The TEMPO at one end of PEO chain mediated the polymerization of St using benzoyl peroxide as initiator. The resultant PS‐b‐PEO‐OH reacted further with 2‐bromoisobutyryl bromide and then initiated the polymerization of tBA in the presence of CuBr and PMDETA by ATRP. The ternary block copolymers PS‐b‐PEO‐b‐PtBA and intermediates were characterized by gel permeation chromatography, Fourier transform infrared, and nuclear magnetic resonance spectroscopy in detail. Differential scanning calorimetry measurements confirmed that the PS‐b‐PEO‐b‐PtBA with PEO as middle block can weaken the interaction between PS and PtBA blocks, the glass transition temperature (Tg) for two blocks were approximate to their corresponding homopolymers comparing with the PEO‐b‐PS‐b‐PtBA with PEO as the first block. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2624–2631, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号