首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Cancer is one of the most serious health problems and the second leading cause of death worldwide, and with an ageing and growing population, problems related to cancer will continue. In the battle against cancer, many therapies and anticancer drugs have been developed. Chemotherapy and relevant drugs are widely used in clinical practice; however, their applications are always accompanied by severe side effects. In recent years, the drug delivery system has been improved by nanotechnology to reduce the adverse effects of the delivered drugs. Among the different candidates, core–sheath nanofibres prepared by coaxial electrospinning are outstanding due to their unique properties, including their large surface area, high encapsulation efficiency, good mechanical property, multidrug loading capacity, and ability to govern drug release kinetics. Therefore, encapsulating drugs in coaxial electrospun nanofibres is a desirable method for controlled and sustained drug release. This review summarises the drug delivery applications of coaxial electrospun nanofibres with different structures and drugs for various cancer treatments.  相似文献   

3.
Hollow polymer microcapsules as drug carriers have the advantages of drug protection, storage, and controlled release. Microcapsules combined with tissue engineering scaffolds such as electrospun microfibers can enhance long-term local drug retention. However, the combination methods of microcapsules and fibers still need to be further explored. Here, different technical approaches to functionalize electrospun polycaprolactone (PCL) microfibers with silk fibroin (SF) microcapsules through encapsulation and surface immobilization are developed, including direct blending and emulsion electrospinning for encapsulation, as well as covalent and cleavable disulfide-linkage for surface immobilization. The results of “blending” approach show that silk microcapsules with different sizes could be uniformly encapsulated inside electrospun fibers without aggregation. To further reduce the use of organic solvents, the microcapsules in the aqueous phase can be uniformly distributed in the PCL organic phase and successfully electrospun into fibers using surfactant span-80. For surface immobilization, silk microcapsules are efficiently covalent binding to the surface of electrospun PCL fibers via click chemistry and exhibited noncytotoxic. Based on this method, with the incorporation of a disulfide bond, the linkages between microcapsule and fiber could be cleaved under reducing conditions. These microcapsule-electrospun fiber combination methods provide sufficient options for different drug delivery requirements.  相似文献   

4.
Transdermal drug delivery system(TDDS) facilitates the controlled release of active ingredients penetrating through the skin, avoiding the liver first pass effect. Electrospinning is a simple process to fabricate ultrafine fibers with a higher specific surface area, making them excellent candidates for drug delivery. In current work, a novel silk fibroin(SF) nanofiber loaded with cationic ethosomes(CEs) was prepared via green electrospinning. The data of Fourier transform infrared spectroscopy(FTIR) and laser scanning confocal microscopy(LSCM) confirmed the existence of CEs in the SF nanofibers. The morphology of the nanofibers was not significantly affected by the incorporation of CEs as shown by scanning electron microscopy(SEM) images. The CEs-loaded SF nanofibrous patch (CEs-SFnP) showed good cytocompatibility as proved by both cell counting Kit-8(CCK-8) assay and SEM. Using doxorubicin hydrochloride(Dox) as a model drug, the transdermal performance of CEs-SFnP was evaluated through Franz diffusion cell against mouse skin. The results indicated that CEs-SFnP can effectively deliver drug into the skin, with a much higher permeation rate than the normal nanofibers without CEs. The as-spun CEs-SFnP in this study could find promising applications in TDDS.  相似文献   

5.
Simvastatin (SIM) particles are liposoluble drugs with large particle sizes, resulting in poor compatibility with electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) nanofibers, so that part of them will be exposed to the electrospun nanofiber surface, which is easy to cause the burst release of drugs. Therefore, in this paper, stearic acid (SA) with good biocompatibility was innovatively added to increase the dispersion uniformity of SIM in the spinning solution, thus improving the performances of SIM-loaded PCL/PEG nanofiber membranes (NFMs). Accordingly, the effects of SA addition on the morphologies, mechanical properties, wettability, and drug release properties of the SIM-loaded NFMs were studied. The results showed that after SIM was dissolved in SA solution, the particle size of SIM was significantly reduced and could be evenly dispersed in the polymer spinning solution, thus obtaining the SIM-loaded composite NFMs with the best morphology and performance.  相似文献   

6.
We report a facile fabrication of a host–metal–guest coordination‐bonding system in a mesostructured Fe3O4/chitosan nanoparticle that can act as a pH‐responsive drug‐delivery system. The mesostructured Fe3O4/chitosan was synthesized by a solvothermal approach with iron(III) chloride hexahydrate as a precursor, ethylene glycol as a reducing agent, ammonium acetate as a porogen, and chitosan as a surface‐modification agent. Subsequently, doxorubicin (DOX), acting as a model drug (guest), was loaded onto the mesostructured Fe3O4/chitosan nanoparticles, with chitosan acting as a host molecule to form the NH2? ZnII? DOX coordination architecture. The release of DOX can be achieved through the cleavage of coordination bonds that are sensitive to variations in external pH under weakly acidic conditions. The pH‐responsive nature of the nanoparticles was confirmed by in vitro releases and cell assay tests. Furthermore, the relaxation efficiency of the nanoparticles as high‐performance magnetic resonance imaging contrast agents was also investigated. Experimental results confirm that the synthesized mesostructured Fe3O4/chitosan is a smart nanovehicle for drug delivery owing to both its pH‐responsive nature and relaxation efficiency.  相似文献   

7.
付开乔  张光彦  蒋序林 《化学进展》2016,28(8):1196-1206
与碳链聚合物相比,聚氨基酸类高分子由于其生物相容性好、可降解代谢、毒副作用低等优点而被广泛应用于生物医药领域。基于天冬氨酸的聚天冬酰胺衍生物,其合成方法简单多样,通过对其修饰改性可制备出具有各种环境响应性(温度、pH和还原敏感)的智能高分子,得到高效、低毒的药物/基因载体,实现可控释放、增强疗效、降低药物副作用的目的。本文重点介绍了聚天冬酰胺衍生物(特别是刺激响应性聚天冬酰胺衍生物)的合成改性方法、及其在药物和基因载体领域最新的研究进展,并对其发展前景进行了展望。  相似文献   

8.
Carriers that can afford tunable physical and structural changes are envisioned to address critical issues in controlled drug delivery applications. Herein, photo‐responsive conjugated polymer nanoparticles (CPNs) functionalized with donor–acceptor Stenhouse adduct (DASA) and folic acid units for controlled drug delivery and imaging are reported. Upon visible‐light (λ=550 nm) irradiation, CPNs simultaneously undergo structure, color, and polarity changes that release encapsulated drugs into the cells. The backbone of CPNs favors FRET to DASA units boosting their fluorescence. Notably, drug‐loaded CPNs exhibit excellent biocompatibility in the dark, indicating perfect control of the light trigger over drug release. Delivery of both hydrophilic and hydrophobic drugs with good loading efficiency was demonstrated. This strategy enables remotely controlled drug delivery with visible‐light irradiation, which sets an example for designing delivery vehicles for non‐invasive therapeutics.  相似文献   

9.
10.
Amphiphilic polymers can self assemble into micellar nano-particles and can be effectively used as nano carriers for drug delivery. A number of macromolecular delivery systems are under investigation to improve the efficacy of prospective drugs. In this study, seven new co-polymers were synthesized under mild reaction conditions in bulk (without solvent) by chemoenzymatic approach using Candida antarctica lipase (Novozyme 435) and molecular sieves, subsequently these polymers were treated with different long chain bromoalkanes and acid chlorides for attachment of the lipophilic moieties to the backbone polymer via an ether or an ester linkage, respectively in order to make them amphiphilic. These synthesized nano-particles demonstrated high drug loading capacity and have the potential to encapsulate hydrophobic drugs.  相似文献   

11.
Summary: Carboxymethyl Konjac Glucomannan–Chitosan (CKGM‐CS) nanoparticles, which are well dispersed and stable in aqueous solution, were spontaneously prepared under very mild conditions by polyelectrolyte complexation. Investigations of the physicochemical properties of these nanoparticles were undertaken. This study showed that the nanoparticulate system driven by complex formation has potential as an advanced drug‐delivery system for water‐soluble drugs.

Preparation mechanism of CS–CKGM nanoparticles.  相似文献   


12.
Core/shell wormlike polymer brushes with densely grafted poly(ϵ‐caprolactone)‐b‐poly(ethylene oxide) (PCL‐b‐PEO) are synthesized via grafting an alkynyl terminated PCL‐b‐PEO (ay‐PCL17b‐PEO113) onto a well‐defined azido functionalized polymethacrylate (PGA940) and are evaluated preliminarily as a single molecular cylindrical vehicle for drug delivery. Water soluble molecular worms of ca. 230 nm are obtained and then the anticancer drug doxorubicin (DOX) is loaded into its PCL core by hydrophobic interaction. Compared with spherical micelles from linear PCL17b‐PEO113, the brushes demonstrate a lower loading efficiency but a faster release rate of DOX. Confocal laser scanning microscopy measurements show that DOX‐loaded cylindrical molecular brushes can easily enter into HeLa and HepG2 cells in 1 h.  相似文献   

13.
14.
Advanced drug delivery micro- and nanosystems have been widely explored due to their appealing specificity/selectivity, biodegradability, biocompatibility, and low toxicity. They can be applied for the targeted delivery of pharmaceuticals, with the benefits of good biocompatibility/stability, non-immunogenicity, large surface area, high drug loading capacity, and low leakage of drugs. Cardiovascular diseases, as one of the primary mortalities cause worldwide with significant impacts on the quality of patients’ life, comprise a variety of heart and circulatory system pathologies, such as peripheral vascular diseases, myocardial infarction, heart failure, and coronary artery diseases. Designing novel micro- and nanosystems with suitable targeting properties and smart release behaviors can help circumvent crucial challenges of the tolerability, low stability, high toxicity, and possible side- and off-target effects of conventional drug delivery routes. To overcome different challenging issues, namely physiological barriers, low efficiency of drugs, and possible adverse side effects, various biomaterials-mediated drug delivery systems have been formulated with reduced toxicity, improved pharmacokinetics, high bioavailability, sustained release behavior, and enhanced therapeutic efficacy for targeted therapy of cardiovascular diseases. Despite the existing drug delivery systems encompassing a variety of biomaterials for treating cardiovascular diseases, the number of formulations currently approved for clinical use is limited due to the regulatory and experimental obstacles. Herein, the most recent advancements in drug delivery micro- and nanosystems designed from different biomaterials for the treatment of cardiovascular diseases are deliberated, with a focus on the important challenges and future perspectives.  相似文献   

15.
A novel injectable in situ gelling drug delivery system (DDS) consisting of biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) nanoparticles and thermosensitive chitosan/gelatin blend hydrogels was developed for prolonged and sustained controlled drug release. Four different HTCC nanoparticles, prepared based on ionic process of HTCC and oppositely charged molecules such as sodium tripolyphosphate, sodium alginate and carboxymethyl chitosan, were incorporated physically into thermosensitive chitosan/gelatin blend solutions to form the novel DDSs. Resulting DDSs interior morphology was evaluated by scanning electron microscopy. The effect of nanoparticles composition on both the gel process and the gel strength was investigated from which possible hydrogel formation mechanisms were inferred. Finally, bovine serum albumin (BSA), used as a model protein drug, was loaded into four different HTCC nanoparticles to examine and compare the effects of controlled release of these novel DDSs. The results showed that BSA could be sustained and released from these novel DDSs and the release rate was affected by the properties of nanoparticle: the slower BSA release rate was observed from DDS containing nanoparticles with a positive charge than with a negative charge. The described injectable drug delivery systems might have great potential application for local and sustained delivery of protein drugs.  相似文献   

16.
The objective of this study is to utilize the pH sensitivity of modified mesoporous silica nanoparticles (MSN) for oral drug delivery. In the first time, a pH‐sensitive ionic liquid was synthesized through the quaternization of 3‐aminopropyltrimethoxysilane (3‐ATMS) with sodium monochloroacetate (SMCA). Then, silica nanoparticle was modified by this pH‐sensitive ionic liquid and converted to a pH‐sensitive positive‐charge silica nanoparticle (PCSN). The nanoparticle was characterized by FTIR and SEM. Naproxen as anionic drug molecules was entrapped in this pH‐sensitive positive‐charge silica nanoparticles (PCSN) and the in vitro release profiles were established separately in both (SGF, pH 1) and (SIF, pH 7.4).  相似文献   

17.
The coordination polymer CPO-27-Mg was rapidly synthesized under microwave irradiation. This material exhibits a sufficiently high drug loading towards aspirin (~8% wt.) and paracetamol (~14% wt.). The binding of these two molecules with the inner surface of the metal-organic framework was studied employing the Gaussian and Plane Wave approach of the Density Functional Theory. The structure of CPO-27-Mg persists after the adsorption of aspirin or paracetamol and their desorption energies, being quite high, decrease under solvent conditions.  相似文献   

18.
非离子表面活性剂Tween 80和PEG 6000在水溶液中以一定的比例混合可形成稳定的类磷脂囊泡结构,这些囊泡可以作为模板来合成磷酸钙纳米空球颗粒。所制备的磷酸钙材料的结构和形貌通过TEM,SEM,FTIR,XRD进行了表征,是尺寸为100~150 nm左右的无定形磷酸钙空心颗粒。磷酸钙具有良好的生物相容性,因此这些具有空心结构特征的磷酸钙可发展为理想的载药体系。我们以牛血清蛋白(BSA)为模型体系研究了材料的载药和释放性能,发现所获得的空心纳米磷酸钙不仅具有良好的蛋白质负载量而且还具有优异的可释放性,明显优于传统的羟基磷灰石体系。  相似文献   

19.
Bioactive glasses (BGs) are being increasingly considered for biomedical applications. One convenient approach to utilize BGs in tissue engineering and drug delivery involves their combination with organic biomaterials in order to form composites with enhanced biocompatibility and biodegradability. In this work, mesoporous bioactive glass nanoparticles (MBGN) have been merged with polyhydroxyalkanoate microspheres with the purpose to develop drug carriers. The composite carriers (microspheres) were loaded with curcumin as a model drug. The toxicity and delivery rate of composite microspheres were tested in vitro, reaching a curcumin loading efficiency of over 90% and an improving of biocompatibility of different concentrations of MBGN due to its administrations through the composite. The composite microspheres were tested in terms of controlled release, biocompatibility and bioactivity. Our results demonstrate that the composite microspheres can be potentially used in biomedicine due to their dual effects: bioactivity (due to the presence of MBGN) and curcumin release capability.  相似文献   

20.
In this study, we have reported novel thermosensitive nanoparticles formulated by an emulsion-solvent evaporation technique using acetaminophen (AAP) as a model drug. The high entrapment efficiency of nanoparticles was 68.56%, particle size about 240.6 nm and zeta potential ?27 mV. Furthermore, the drug release was also investigated both at 37°C and 42°C, respectively. The goal of our study was to obtain a targeted drug delivery system, exploiting the temperature-sensitive behavior. In contrary to normal temperature (37°C), the release rate of AAP was found to noticeably increase at high temperature (42°C) with a larger cumulative amount of drug released. In this way, it would lead to production of nanoparticles having a high thermosensitive behavior on drug release. Thus, this new strategy has the potential to control drug release at the diseased site for targeted drug delivery system (TDDS) with positive temperature-controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号