共查询到20条相似文献,搜索用时 93 毫秒
1.
Lei Zheng Rajeswari M. Kasi Richard J. Farris E. Bryan Coughlin 《Journal of polymer science. Part A, Polymer chemistry》2002,40(7):885-891
Copolymerizations of styrene and the polyhedral oligomeric silsesquioxane (POSS)–styryl macromonomer 1‐(4‐vinylphenyl)‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane have been performed with CpTiCl3 in conjunction with methylaluminoxane. Random copolymers of syndiotactic polystyrene (sPS) and POSS have been formed and fully characterized with 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. NMR data reveal a moderately high syndiotacticity of the polystyrene backbone consistent with this use of CpTiCl3 as a catalyst and POSS loadings as high as 24 wt % and 3.2 mol %. Thermogravimetric analysis of the sPS–POSS copolymers under both nitrogen and air shows improved thermal stability with higher degradation temperatures and char yields, demonstrating that the inclusion of the inorganic POSS nanoparticles makes the organic polymer matrix more thermally robust. The polymerization activity and thermal stability are also compared with those of reported atactic polystyrene–POSS copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 885–891, 2002; DOI 10.1002/pola.10175 相似文献
2.
In order to investigate the effect of presence of well defined nano-sized inorganic particles on the molecular mobility a
conformation statistics of polymer chains, well defined polystyrene (PS) and poly(methyl methacrylate) (PMMA) macromolecules
containing polyhedral oligomeric silsesquioxanes nanoparticles (POSS) were synthesized by copper-mediated atom transfer radical
polymerization (ATRP). Two approaches were used for the synthesis — the first involves POSS as the initiator of ATRP; the
second way considers an addition of POSS to the polymer (prepared by ATRP) with an appropriate functional group. Kinetics
of polymerization was determined using common analytical methods and it was compared to the polymerizations initiated by low-molecular
weight initiators, regarding the polymerization rate, initiation efficiency and polydispersity of the polymer. Efficiency
of the initiation with POSS-containing initiators was low, causing remnants of inseparable free POSS in polymer. The second
approach bypassed these disadvantages —POSS is connected to the polymer through a pending allyl group using the very efficient
hydrosilylation reaction.
Presented at the 1st Bratislava Young Polymer Scientists Workshop, Bratislava, 20–23 August 2007. 相似文献
3.
Kaiwen Liang Hossein Toghiani Guizhi Li Charles U. Pittman 《Journal of polymer science. Part A, Polymer chemistry》2005,43(17):3887-3898
Cyanate ester (PT‐15, Lonza Corp) composites containing the inorganic–organic hybrid polyhedral oligomeric silsesquioxane (POSS) octaaminophenyl(T8)POSS [ 1 ; (C6H4NH2)8(SiO1.5)8] were synthesized. These PT‐15/POSS‐ 1 composites (99/1, 97/3, and 95/5 w/w) were characterized by X‐ray diffraction (XRD), transmission election microscopy (TEM), dynamic mechanical thermal analysis, solvent extraction, and Fourier transform infrared. The glass‐transition temperatures (Tg's) of the composite with 1 wt % 1 increased sharply versus the neat PT‐15, but 3 and 5 wt % 1 in these cyanate ester composites depressed Tg. All the PT‐15/POSS composites exhibited higher storage modulus (E′) values (temperature > Tg) than the parent resin, but these values decreased from 1 to 5 wt % POSS. The loss factor peak intensities decreased and their widths broadened upon the incorporation of POSS. XRD, TEM, and IR data were all consistent with the molecular dispersion of 1 due to the chemical bonding of the octaamino POSS‐ 1 macromer into the continuous cyanate ester network phase. The amino groups of 1 reacted with cyanate ester functions at lower temperatures than those at which cyanate ester curing by cyclotrimerization occurred. In contrast to 1 , 3‐cyanopropylheptacyclopentyl(T8)POSS [ 2 ; (C5H9)7(SiO1.5)8CH2CH2CH2CN] had low solubility in PT‐15 and did not react with the resin below or at the cure temperature. Thus, phase‐separated aggregates of 2 were found in samples containing 1–10 wt % 2 . Nevertheless, the Tg and E′ values (temperature > 285 °C) of these composites increased regularly with an increase in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3887–3898, 2005 相似文献
4.
The fluorescently labelled polymers including pyrene-labelled polystyrene (PyPS) and pyrene-labelled poly(methyl methacrylate) (PyPMMA) with narrow molecular weight distributions were synthesized by the atom transfer radical copolymerization (ATRCP) of styrene or methyl methacrylate with 1-pyrenemethyl methacrylate (PyMMA). The ultrathin PyPS and PyPMMA films with the thickness ranging from 30 nm to 400 nm supported on the quartz slides were prepared by spin-coating. The fluorescent quantum yield (QY) of the pyrene probe in the ultrathin polymer films was investigated by the photoluminescence spectrometer using an integrating sphere detector. The QY decreased with the reduction of film thickness in the sub-200 nm range. 相似文献
5.
Guirong Pan James E. Mark Dale W. Schaefer 《Journal of polymer science. Part A, Polymer chemistry》2003,41(24):3314-3323
Four polyhedral oligomeric silsesquioxane (POSS) cages with vinyl groups were linked to a central siloxane core by hydrosilylation. The goal was to obtain filler particles of sizes between those of the POSS cages themselves and the much larger silica particles typically used to reinforce elastomers. The hydrosilylation reaction was monitored with Fourier transform infrared spectroscopy and proton nuclear magnetic resonance, and the resulting structure was confirmed by mass spectrometry. Simply blending these POSS-based fillers into silanol-terminated poly(dimethylsiloxane) (PDMS) had little effect on the mechanical properties, but bonding them to PDMS provided considerable reinforcement. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3314–3323, 2003 相似文献
6.
Ben Hong Yang Hong Yao Xu Cun Li Shan Yi Guang 《中国化学快报》2007,18(8):960-962
A novel poly(methyl methacrylate-co-polyhedral oligomeric silsesquioxane) hybrid nanocomposite was synthesized by free radical polymerization and characterized by ~1H NMR,~(29)Si NMR,and TGA technologies.Compared with PMMA homopolymer, the nanocomposite has better thermal stability. 相似文献
7.
Yuan Fang Li Chen Su Chen 《Journal of polymer science. Part A, Polymer chemistry》2009,47(4):1136-1147
We report on a new strategy for fabricating well‐defined POSS‐based polymeric materials with and without solvent by frontal polymerization (FP) at ambient pressure. First, we functionalize polyhedral oligomeric silsesquioxane (POSS) with isophorone diisocyanate (IPDI). With these functionalized POSS‐containing isocyanate groups, POSS can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP in situ. Constant velocity FP is observed without significant bulk polymerization. The morphology and thermal properties of POSS‐based hybrid polymers prepared via FP are comparatively investigated on the basis of scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). Results show that the as‐prepared POSS‐based polymeric materials exhibit a higher glass transition temperature than that of pure PNMA, ascribing to modified POSS well‐dispersed in these hybrid polymers. Also, the products with different microstructures display different thermal properties. The pure PNMA exhibits a featureless morphology, whereas a hierarchical morphology is obtained for the POSS‐based polymeric materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1136–1147, 2009 相似文献
8.
Hongyao Xu Benhong Yang Jiafeng Wang Shanyi Guang Cun Li 《Journal of polymer science. Part A, Polymer chemistry》2007,45(22):5308-5317
The soluble poly(methyl methacrylate‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PMMA–POSS) hybrid nanocomposites with improved Tg and high thermal stability were synthesized by common free radical polymerization and characterized using FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA. The POSS contents in the nanocomposites were determined based on FTIR spectrum, revealing that it can be effectively adjusted by varying the feed ratio of POSS in the hybrid composites. On the basis of the 1H NMR analysis, the number of the reacted vinyl groups on each POSS molecules was determined to be about 6–8. The DSC and TGA measurements indicated that the hybrid nanocomposites had higher Tg and better thermal properties than the pure PMMA homopolymer. The Tg increase mechanism was investigated using FTIR, displaying that the dipole–dipole interaction between PMMA and POSS also plays very important role to the Tg improvement besides the molecular motion hindrance from the hybrid structure. The thermal stability enhances with increase of POSS content, which is mainly attributed to the incorporation of nanoscale inorganic POSS uniformly dispersed at molecular level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5308–5317, 2007 相似文献
9.
This paper presents the results of morphological and ac electrical investigations on low density polyethylene (LDPE) composites with octavinyl polyhedral oligomeric silsesquioxane (POSS). It has been shown that at low loadings, the frequency dependence of dielectric constant and dielectric loss for the LDPE/POSS composites showed unusual behaviors when compared with conventional (micro-sized particulates) composites. The ac breakdown strength was measured and statistical analysis was applied to the results to determine the effects of POSS loadings on the dielectric strength of LDPE. The morphological characterization showed that the presence of POSS additives apparently altered the supermolecular structure of LDPE and resulted in more homogeneous morphology when compared with the neat LDPE. The structure-property relationship was discussed and it was concluded that the final dielectric properties of the composites were determined not only by the incorporation of POSS additives but also by the supermolecular structure of LDPE. Rheological analyses of LDPE/POSS composite were also performed and the results showed that the octavinyl-POSS had good compatibility with LDPE. 相似文献
10.
Elizabeth A. Baker Perla Rittigstein John M. Torkelson Connie B. Roth 《Journal of polymer science. Part A, Polymer chemistry》2009,47(24):2509-2519
Existing studies in the research literature showing conflicting changes in physical aging rates with decreasing film thickness in nanoconfined polymer films highlight the need for a single experimental technique to efficiently characterize physical aging rates in thin polymer films of varying chemical structure. To that end, we have developed a streamlined ellipsometry procedure to measure the structural relaxation of thin glassy polymer films. We evaluate different methods of calculating a physical aging rate β from the measured thickness h(t) and index of refraction n(t) data. We present extensive measurements of β as a function of aging temperature and aging time for polystyrene (PS) films supported on silicon, and determine that the physical aging rate β can be easily and reliably determined from β = −1/h0 dh/d(log t), where h0 is the initial measure of the film thickness at an aging time of 10 min. We have also carried out oxygen permeation studies on poly(methyl methacrylate) (PMMA) films from 800 μm down to 190 nm in thickness, and find no change in the permeability with film thickness or physical aging at room temperature for up to 65 days, which suggests that gas permeation may be insensitive to physical aging in such low free volume polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2509–2519, 2009 相似文献
11.
Gui Zhi Li Hosouk Cho Lichang Wang Hossein Toghiani Charles U. Pittman 《Journal of polymer science. Part A, Polymer chemistry》2005,43(2):355-372
Poly[isobutyl methacrylate‐co‐butanediol dimethacrylate‐co‐3‐methacrylylpropylheptaisobutyl‐T8‐polyhedral oligomeric silsesquioxane] [P(iBMA‐co‐BDMA‐co‐MA‐POSS)] nanocomposites with different crosslink densities and different polyhedral oligomeric silsesquioxane (MA‐POSS) percentages (5, 10, 15, 20, and 30 wt %) were synthesized by radical‐initiated terpolymerization. Linear [P(iBMA‐co‐MA‐POSS)] copolymers were also prepared. The viscoelastic properties and morphologies were studied by dynamic mechanical thermal analysis, confocal microscopy, and transmission electron microscopy (TEM). The viscoelastic properties depended on the crosslink density. The dependence of viscoelastic properties on MA‐POSS content at a low BDMA loading (1 wt %) was similar to that of linear P(iBMA‐co‐MA‐POSS) copolymers. P(iBMA‐co‐1 wt % BDMA‐co‐10 wt % MA‐POSS) exhibited the highest dynamic storage modulus (E′) values in the rubbery region of this series. The 30 wt % MA‐POSS nanocomposites with 1 wt % BDMA exhibited the lowest E′. However, the E′ values in the rubbery region for P(iBMA‐co‐3 wt % BDMA‐co‐MA‐POSS) nanocomposites with 15 and 30 wt % MA‐POSS were higher than those of the parent P(iBMA‐co‐3 wt % BDMA) resin. MA‐POSS raised the E′ values of all P(iBMA‐co‐ 5 wt % BDMA‐co‐MA‐POSS) nanocomposites in the rubbery region above those of P(iBMA‐co‐5 wt % BDMA), but MA‐POSS loadings < 15 wt % had little influence on glass‐transition temperatures (Tg's) and slightly reduced Tg values with 20 or 30 wt % POSS. Heating history had little influence on viscoelastic properties. No POSS aggregates were observed for the P(iBMA‐co‐1 wt % BDMA‐co‐MA‐POSS) nanocomposites by TEM. POSS‐rich particles with diameters of several micrometers were present in the nanocomposites with 3 or 5 wt % BDMA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 355–372, 2005 相似文献
12.
Yuan‐Jyh Lee Shiao‐Wei Kuo Wu‐Jang Huang Hung‐Yen Lee Feng‐Chih Chang 《Journal of Polymer Science.Polymer Physics》2004,42(6):1127-1136
The miscibility of a phenolic resin with polyhedral oligomeric silsesquioxane (POSS) hybrids and the specific interactions between them were investigated with Fourier transform infrared (FTIR) spectroscopy and wide‐angle X‐ray diffraction (WAXD). An analysis of the morphology and microstructure was performed with polarized optical microscopy and atomic force microscopy (AFM). The interassociation equilibrium constant between the phenolic resin and POSS (38.7) was lower than the self‐association equilibrium constant of pure phenolic (52.3) according to the Painter–Coleman association model. This result indicated that POSS was partially miscible with the phenolic resin. A polarized optical microscopy image of a phenolic/POSS hybrid material (20 wt % POSS) indicated that the crystals of POSS were arranged evenly in the phenolic matrix; the self‐assembled array of POSS crystals was also confirmed by AFM. This phenomenon was consistent with the FTIR spectroscopy and WAXD analyses. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1127–1136, 2004 相似文献
13.
Bruce X. Fu Ling Yang Rajesh H. Somani Steven X. Zong Benjamin S. Hsiao Shawn Phillips Rusty Blanski Patrick Ruth 《Journal of Polymer Science.Polymer Physics》2001,39(22):2727-2739
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001 相似文献
14.
Jiangxuan Song Guangxin Chen Gang Wu Chunhua Cai Pinggui Liu Qifang Li 《先进技术聚合物》2011,22(12):2069-2074
Linear isocyanate‐terminated poly(urethane‐imide) (PUI) with combination of the advantages of polyurethane and polyimide was directly synthesized by the reaction between polyurethane prepolymer and pyromellitic dianhydride (PMDA). Then octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS) and PUI were incorporated into the epoxy resin (EP) to prepare a series of EP/PUI/POSS organic–inorganic nanocomposites for the purpose of simultaneously improving the heat resistance and toughness of the epoxy resin. Their thermal degradation behavior, dynamic mechanical properties, and morphology were studied with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscope (TEM). The results showed that the thermal stability and mechanical modulus was greatly improved with the addition of PUI and POSS. Moreover, the EP/PUI/POSS nanocomposites had lower glass transition temperatures. The TEM results revealed that POSS molecules could self assemble into strip domain which could switch to uniform dispersion with increasing the content of POSS. All the results could be ascribed to synergistic effect of PUI and POSS on the epoxy resin matrix. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
15.
Weian Zhang Li Liu Xiaodong Zhuang Xiaohui Li Jinrui Bai Yu Chen 《Journal of polymer science. Part A, Polymer chemistry》2008,46(21):7049-7061
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) was used to prepare a POSS‐containing reversible addition‐fragmentation transfer (RAFT) agent. The POSS‐containing RAFT agent was used in the RAFT polymerization of N‐isopropylacrylamide (NIPAM) to produce tadpole‐shaped organic/inorganic hybrid Poly(N‐isopropylacrylamide) (PNIPAM). The results show that the POSS‐containing RAFT agent was an effective chain transfer agent in the RAFT polymerization of NIPAM, and the polymerization kinetics were found to be pseudo‐first‐order behavior. The thermal properties of the organic/inorganic hybrid PNIPAM were also characterized by differential scanning calorimetry. The glass transition temperature (Tg) of the tadpole‐shaped inorganic/organic hybrid PNIPAM was enhanced by POSS molecule. The self‐assembly behavior of the tadpole‐shaped inorganic/organic hybrid PNIPAM was investigated by atomic force microscopy and dynamic light scattering. The results show the core‐shell nanostructured micelles with a uniform diameter. The diameter of the micelle increases with the molecular weight of the hybrid PNIPAM. Surprisingly, the micelle of the tadpole‐shaped inorganic/organic hybrid PNIPAM with low molecular weight has a much bigger and more compact core than that with high molecular weight. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7049–7061, 2008 相似文献
16.
The synthesis of intrinsic flame retardant copolymer by copolymerization with reactive flame retardants is the most potential method to prepare transparent and flame retardant poly (methyl methacrylate) (PMMA) at present,but the main challenge of this method is that the copolymer usually has poor mechanical properties and heat resistance. In this work, the hydrogen bond enhancement strategy is adopted, and the flame retardant PMMA with excellent comprehensive properties is obtained by ternary copolymerization with methyl methacrylate (MMA) as matrix unit, diethyl (methacryloyloxymethyl) phosphonate (DEP) as flame retardant unit and methacrylamide (MAA) as hydrogen bond unit. Due to the formation of intermolecular hydrogen bond via MAA unit, the storage modulus, flexural strength and impact strength of the terpolymer containing 15 mol% MAA are 48%, 19%, and 24% higher than those of the copolymer of MMA and DEP, and its hardness, glass transition temperature and load thermal deformation temperature (increased by 7°C) are also superior. Moreover, owing to the gas-phase dilution and charring flame retardancy of MAA unit, the terpolymer shows increased limiting oxygen index (24.3%) and UL94 rating (V-1). This work not only provides a promising flame retardant PMMA for practical application, but also offers a new strategy to design flame retardant polymers with good mechanical properties. 相似文献
17.
Leesa M. Smith Michelle L. Coote 《Journal of polymer science. Part A, Polymer chemistry》2013,51(16):3351-3358
The effect of temperature and solvent on polymer tacticity in free‐radical polymerization of styrene and methyl methacrylate was studied by 13C and 1H NMR, respectively. Polystyrene shows a mild syndiotactic tendency (Pm = 0.36 ± 0.02) that is independent of temperature over a wide range (?10 to 120 °C), while poly(methyl methacrylate) shows a stronger syndiotactic tendency (Pm = 0.17 ± 0.01 at 30 °C) that decreases as temperature is increased (Pm = 0.22 ± 0.02 at 80 °C). None of the polymerization solvents studied (bulk, THF, DMF, DMSO, acetonitrile, and acetone) had a significant effect on polymer tacticity in either system. The triad fractions of both polymers showed deviations from the Bernoulli model, implying that the antepenultimate unit affects the propagation reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3351–3358 相似文献
18.
Fanlin Zeng Yizhi Liu Yi Sun Enlai Hu Yu Zhou 《Journal of Polymer Science.Polymer Physics》2012,50(23):1597-1611
Nanocomposites composed of a poly(vinylidene fluoride) (PVDF) matrix and 0, 3, 5, and 8 wt % fluoropropyl polyhedral oligomeric silsesquioxane (FP‐POSS) were prepared by using the solvent evaporation method. The morphology and the crystalline phase of the nanocomposites were investigated by digital microscopy, scanning probe microscopy, X‐ray diffractometer, and Fourier transform infrared spectroscopy. FP‐POSS acted as nucleating agent in PVDF matrix. A small content of FP‐POSS resulted in an incomplete nucleation of PVDF and generated bigger spherical particles, whereas higher contents led to a complete nucleation and formed more separate and less‐crosslinked particles. Nanoindentation, nanoscratch, and nanotensile tests were carried out to study the influence of different contents of FP‐POSS on the key static and dynamic mechanical properties of different systems. The nanocomposite with 3 wt % FP‐POSS was found to possess enhanced elastic properties and hardness. However, with the increase of the FP‐POSS content, the elastic modulus and hardness were found to decrease, and the improvement on stiffness was negative at contents of 5 and 8 wt %. Compared with neat PVDF, the scratch resistance of the PVDF/FP‐POSS nanocomposites was decreased due to a rougher surface derived from the bigger spherulites. Nanotensile testing results showed both the stiffness and toughness of PVDF‐FP3% were enhanced and further additions of FP‐POSS brought dramatic enhancements in toughness while associated with a decline in stiffness. Dynamical mechanical properties indicated the viscosity of the nanocomposites increased with the increasing FP‐POSS contents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
19.
Summary: Polystyrene nanosize particles have been synthesized by a differential microemulsion polymerization process involving the use of a small amount of poly(methyl methacrylate) as the seeds. Sodium dodecyl sulfate and ammonium persulfate were used as the surfactant and initiator, respectively. The effects of various reaction conditions on the particle size have been investigated. Particle sizes of less than 20 nm have been achieved at milder conditions than those previously reported in the literature.
20.
Peiguang Zhou H. L. Frisch L. Rogovina L. Makarova A. Zhdanov N. Sergeienko 《Journal of polymer science. Part A, Polymer chemistry》1993,31(10):2481-2491
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc. 相似文献