首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a simple and efficient heuristic algorithm for the graph coloring problem and show that for all k ≥ 1, it finds an optimal coloring for almost all k-colorable graphs. We also show that an algorithm proposed by Brélaz and justified on experimental grounds optimally colors almost all k-colorable graphs. Efficient implementations of both algorithms are given. The first one runs in O(n + m log k) time where n is the number of vertices and m the number of edges. The new implementation of Brélaz's algorithm runs in O(m log n) time. We observe that the popular greedy heuristic works poorly on k-colorable graphs.  相似文献   

2.
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs Gn,p (above the connectivity threshold) and for random regular graphs Gr,r ≥ 3, the graph Γ(t) undergoes a phase transition in the sense of the well‐known ErdJW‐RSAT1100590x.png ‐Renyi phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique giant component, plus components of size O(log n), and for t ≥ (1 + ε)t* all components are of size O(log n). For Gn,p and Gr we give the value of t*, and the size of Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above the strong connectivity threshold, there is a similar directed phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t ≥ (1 + ε)t* all strongly connected components are of size O(log n). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

3.
The odd girth of a graph G is the length of a shortest odd cycle in G. Let d(n, g) denote the largest k such that there exists a k-regular graph of order n and odd girth g. It is shown that dn, g ≥ 2|n/g≥ if n ≥ 2g. As a consequence, we prove a conjecture of Pullman and Wormald, which says that there exists a 2j-regular graph of order n and odd girth g if and only if ngj, where g ≥ 5 is odd and j ≥ 2. A different variation of the problem is also discussed.  相似文献   

4.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph is called 2‐degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2‐degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non ? regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G)?Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. We prove the conjecture for 2‐degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2‐degenerate graph with maximum degree Δ, then a′(G)?Δ + 1. © 2010 Wiley Periodicals, Inc. J Graph Theory 69: 1–27, 2012  相似文献   

5.
We introduce a new technique for analyzing the mixing rate of Markov chains. We use it to prove that the Glauber dynamics on 2Δ‐colorings of a graph with maximum degree Δ mixes in O(n log n) time. We prove the same mixing rate for the Insert/Delete/Drag chain of Dyer and Greenhill (Random Structures Algorithms 13 , 285–317 (1998)) on independent sets of graphs with maximum degree 4. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 101–115, 2001  相似文献   

6.
For a graph G, let a(G) denote the maximum size of a subset of vertices that induces a forest. Suppose that G is connected with n vertices, e edges, and maximum degree Δ. Our results include: (a) if Δ ≤ 3, and GK4, then a(G) ≥ n ? e/4 ? 1/4 and this is sharp for all permissible e ≡ 3 (mod 4); and (b) if Δ ≥ 3, then a(G) ≥ α(G) + (n ? α(G))/(Δ ? 1)2. Several problems remain open. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 113–123, 2001  相似文献   

7.
We consider the problem of generating a random q‐coloring of a graph G = (V, E). We consider the simple Glauber Dynamics chain. We show that if the maximum degree Δ > c1ln n and the girth g > c2ln Δ (n = |V|) for sufficiently large c1, c2, then this chain mixes rapidly provided q/Δ > β, where β ≈ 1.763 is the root of β = e1/β. For this class of graphs, this beats the 11Δ/6 bound of Vigoda 14 for general graphs. We extend the result to random graphs. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 167–179, 2003  相似文献   

8.
A proper coloring of the edges of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. For certain graphs G, a′(G) ≥ Δ(G) + 2 where Δ(G) is the maximum degree in G. It is known that a′(G) ≤ 16 Δ(G) for any graph G. We prove that there exists a constant c such that a′(G) ≤ Δ(G) + 2 for any graph G whose girth is at least cΔ(G) log Δ(G), and conjecture that this upper bound for a′(G) holds for all graphs G. We also show that a′(G) ≤ Δ + 2 for almost all Δ‐regular graphs. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 157–167, 2001  相似文献   

9.
We analyze Markov chains for generating a random k‐coloring of a random graph Gn,d/n. When the average degree d is constant, a random graph has maximum degree Θ(log n/log log n), with high probability. We show that, with high probability, an efficient procedure can generate an almost uniformly random k‐coloring when k = Θ(log log n/log log log n), i.e., with many fewer colors than the maximum degree. Previous results hold for a more general class of graphs, but always require more colors than the maximum degree. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

10.
Gibbs sampling also known as Glauber dynamics is a popular technique for sampling high dimensional distributions defined on graphs. Of special interest is the behavior of Gibbs sampling on the Erd?s‐Rényi random graph G(n,d/n), where each edge is chosen independently with probability d/n and d is fixed. While the average degree in G(n,d/n) is d(1 ‐ o(1)), it contains many nodes of degree of order log n/log log n. The existence of nodes of almost logarithmic degrees implies that for many natural distributions defined on G(n,p) such as uniform coloring (with a constant number of colors) or the Ising model at any fixed inverse temperature β, the mixing time of Gibbs sampling is at least n1+Ω(1/log log n). Recall that the Ising model with inverse temperature β defined on a graph G = (V,E) is the distribution over {±}Vgiven by . High degree nodes pose a technical challenge in proving polynomial time mixing of the dynamics for many models including the Ising model and coloring. Almost all known sufficient conditions in terms of β or number of colors needed for rapid mixing of Gibbs samplers are stated in terms of the maximum degree of the underlying graph. In this work, we show that for every d < ∞ and the Ising model defined on G (n, d/n), there exists a βd > 0, such that for all β < βd with probability going to 1 as n →∞, the mixing time of the dynamics on G (n, d/n) is polynomial in n. Our results are the first polynomial time mixing results proven for a natural model on G (n, d/n) for d > 1 where the parameters of the model do not depend on n. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than npolylog(n). Our proof exploits in novel ways the local tree like structure of Erd?s‐Rényi random graphs, comparison and block dynamics arguments and a recent result of Weitz. Our results extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which every vertex v of the graph has a neighborhood N(v) of radius O(log n) in which the induced sub‐graph is a tree union at most O(log n) edges and where for each simple path in N(v) the sum of the vertex degrees along the path is O(log n). Moreover, our result apply also in the case of arbitrary external fields and provide the first FPRAS for sampling the Ising distribution in this case. We finally present a non Markov Chain algorithm for sampling the distribution which is effective for a wider range of parameters. In particular, for G(n, d/n) it applies for all external fields and β < βd, where d tanh(βd) = 1 is the critical point for decay of correlation for the Ising model on G(n, d/n). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

11.
We study the problem of coloring graphs in an online manner. The only known deterministic online graph coloring algorithm with a sublinear performance function was found by [9.], 319–325). Their algorithm colors graphs of chromatic number χ with no more than (2χn)/log* n colors, where n is the number of vertices. They point out that the performance can be improved slightly for graphs with bounded chromatic number. For three-chromatic graphs the number of colors used, for example, is O(n log log log n/log log n). We show that randomization helps in coloring graphs online. We present a simple randomized online algorithm to color graphs with expected number of colors O(2χχ2n(χ−2)/(χ−1)(log n)1/(χ−1)). For three-colorable graphs the expected number of colors our algorithm uses is . All our algorithms run in polynomial time. It is interesting to note that our algorithm compares well with the best known polynomial time offline algorithms. For instance, the best polynomial time algorithm known for three-colorable graphs, due to [4.] pp. 554–562). We also prove a lower bound of Ω((1/(χ − 1))((log n/(12(χ + 1))) − 1)χ−1) for the randomized model. No lower bound for the randomized model was previously known. For bounded χ, our result improves even the best known lower bound for the deterministic case: Ω((log n/log log n)χ−1), due to Noga Alon (personal communication, September 1989).  相似文献   

12.
Given a graph G, a total k‐coloring of G is a simultaneous coloring of the vertices and edges of G with at most k colors. If Δ(G) is the maximum degree of G, then no graph has a total Δ‐coloring, but Vizing conjectured that every graph has a total (Δ + 2)‐coloring. This Total Coloring Conjecture remains open even for planar graphs. This article proves one of the two remaining planar cases, showing that every planar (and projective) graph with Δ ≤ 7 has a total 9‐coloring by means of the discharging method. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 67–73, 1999  相似文献   

13.
Recently, Mader [ 7 ] proved that every 2k‐connected graph with girth g(G) sufficiently large is k‐linked. We show here that g(G ≥ 11 will do unless k = 4,5. If k = 4,5, then g(G) ≥ 19 will do. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 48–50, 2004  相似文献   

14.
Gibbs sampling also known as Glauber dynamics is a popular technique for sampling high dimensional distributions defined on graphs. Of special interest is the behavior of Gibbs sampling on the Erd?s–Rényi random graph G(n, d/n), where each edge is chosen independently with probability d/n and d is fixed. While the average degree in G(n, d/n) is d(1?o(1)), it contains many nodes of degree of order (log n) / (log log n). The existence of nodes of almost logarithmic degrees implies that for many natural distributions defined on G(n, d/n) such as uniform coloring (with a constant number of colors) or the Ising model at any fixed inverse temperature β, the mixing time of Gibbs sampling is at least n 1+Ω(1 / log log n) with high probability. High degree nodes pose a technical challenge in proving polynomial time mixing of the dynamics for many models including coloring. Almost all known sufficient conditions in terms of number of colors needed for rapid mixing of Gibbs samplers are stated in terms of the maximum degree of the underlying graph. In this work we consider sampling q-colorings and show that for every d < ∞ there exists q(d) < ∞ such that for all qq(d) the mixing time of the Gibbs sampling on G(n, d/n) is polynomial in n with high probability. Our results are the first polynomial time mixing results proven for the coloring model on G(n, d/n) for d > 1 where the number of colors does not depend on n. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than npolylog(n). In previous work we have shown that similar results hold for the ferromagnetic Ising model. However, the proof for the Ising model crucially relied on monotonicity arguments and the “Weitz tree”, both of which have no counterparts in the coloring setting. Our proof presented here exploits in novel ways the local treelike structure of Erd?s–Rényi random graphs, block dynamics, spatial decay properties and coupling arguments. Our results give the first polynomial-time algorithm to approximately sample colorings on G(n, d/n) with a constant number of colors. They extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which there exists an α > 0 such that every vertex v of the graph has a neighborhood N(v) of radius O(log n) in which the induced sub-graph is the union of a tree and at most O(1) edges and where each simple path Γ of length O(log n) satisfies ${\sum_{u \in \Gamma}\sum_{v \neq u}\alpha^{d(u,v)} = O({\rm log} n)}$ . The results also generalize to the hard-core model at low fugacity and to general models of soft constraints at high temperatures.  相似文献   

15.
An acyclic edge coloring of a graph is a proper edge coloring such that every cycle contains edges of at least three distinct colors.The acyclic chromatic index of a graph G,denoted by a′(G),is the minimum number k such that there is an acyclic edge coloring using k colors.It is known that a′(G)≤16△for every graph G where △denotes the maximum degree of G.We prove that a′(G)13.8△for an arbitrary graph G.We also reduce the upper bounds of a′(G)to 9.8△and 9△with girth 5 and 7,respectively.  相似文献   

16.
We give improved solutions for the problem of generating thek smallest spanning trees in a graph and in the plane. Our algorithm for general graphs takes timeO(m log(m, n)=k 2); for planar graphs this bound can be improved toO(n+k 2). We also show that thek best spanning trees for a set of points in the plane can be computed in timeO(min(k 2 n+n logn,k 2+kn log(n/k))). Thek best orthogonal spanning trees in the plane can be found in timeO(n logn+kn log log(n/k)+k 2).  相似文献   

17.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, it is proved that every planar graph G with girth g and maximum degree Δ has(1)lc(G) ≤Δ 21 if Δ≥ 9; (2)lc(G) ≤「Δ/2」 + 7 ifg ≥ 5; (3) lc(G) ≤「Δ/2」 + 2 ifg ≥ 7 and Δ≥ 7.  相似文献   

18.
We prove a variant of a Johnson‐Lindenstrauss lemma for matrices with circulant structure. This approach allows to minimize the randomness used, is easy to implement and provides good running times. The price to be paid is the higher dimension of the target space k = O?2 log3 n) instead of the classical bound k = O?2 log n). © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

19.
We describe an algorithm for the dominating set problem with time complexity O((4g+40)kn2) for graphs of bounded genus g1, where k is the size of the set. It has previously been shown that this problem is fixed parameter tractable for planar graphs. We give a simpler proof for the previous O(8kn2) result for planar graphs. Our method is a refinement of the earlier techniques.  相似文献   

20.
The dynamic programming algorithm of [12.] for the bandwidth minimization problem is improved. It is shown that, for all k > 1, BANDWIDTH(k) can be solved in O(nk) steps and simultaneous O(nk) space, where n is the number of vertices in the graph, and that each such problem is in NSPACE(log n). The same improved dynamic programming algorithm approach works to show that the MINCUT LINEAR ARRANGEMENT problem restricted to the fixed value k, denoted by MINCUT(k), is solvable in O(nk) steps and simultaneous O(nk) space and is in the class NSPACE(log n).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号