首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel calixarene‐centered amphiphilic A2B2 miktoarm star copolymers composed of two PCL arms and two PEG arms with calix[4]arene as core moiety were synthesized by the combination of CROP and “click” chemistry. First, a heterotetrafunctional calix[4]arene derivative with two hydroxyl groups and two alkyne groups was designed as a macroinitiator to prepare calixarene‐centered PCL homopolymers (C4‐PCL) by CROP in the presence of Sn(Oct)2 as catalyst at 110 °C. Next, azide‐terminated PEG (A‐PEG) was synthesized by tandem treating methoxy poly(ethylene glycol)s (mPEG) with 4‐chlorobutyryl chloride and NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction between C4‐PCL and A‐PEG led to A2B2 miktoarm star copolymer [C4S(PCL)2‐(PEG)2]. 1H NMR, FT‐IR, and SEC analyses confirmed the well‐defined miktoarm star architecture. These amphiphilic miktoarm star copolymers could self‐assemble into multimorphological aggregates in water. The calix[4]arene moieties with a cavity <1 nm on the hydrophilic/hydrophobic interface of these aggregates may provide potential opportunities to entrap guest molecules for special applications in supermolecular science. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Well‐defined drug‐conjugated amphiphilic A2B2 miktoarm star copolymers [(PCL)2‐(PEG)2‐D] were prepared by the combination of controlled ring‐opening polymerization (CROP) and “click” reaction strategy. First, bromide functionalized poly(ε‐caprolactone) (PCL‐Br) with double hydroxyl end groups was synthesized by the CROP of ε‐caprolactone using 2,2‐bis(bromomethyl)propane‐1,3‐diol as a difunctional initiator in the presence of Sn(Oct)2 at 110 °C. Next, the bromide groups of PCL‐Br were quantitatively converted to azide form by NaN3 to give PCL‐N3. Subsequently, the end hydroxyl groups of PCL‐N3 were capped with ibuprofen as a model drug at room temperature. Finally, copper(I)‐catalyzed cycloaddition reaction between ibuprofen‐conjugated PCL‐N3 and slightly excess alkyne‐terminated poly(ethylene glycol) (A‐PEG) led to ibuprofen‐conjugated A2B2 miktoarm star copolymer [(PCL)2‐(PEG)2‐D]. The excess A‐PEG was removed by dialysis. 1H NMR, FTIR and SEC analyzes confirmed the expected miktoarm star architecture. These amphiphilic miktoarm star copolymers could self‐assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In addition, the drug‐loading capacity of these drug‐conjugated miktoarm star copolymers as well as their nondrug‐conjugated analogs were also investigated in detail. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

3.
Novel amphiphilic A14B7 multimiktoarm star copolymers composed of 14 poly(ε‐caprolactone) (PCL) arms and 7 poly(acrylic acid) (PAA) arms with β‐cyclodextrin (β‐CD) as core moiety were synthesized by the combination of controlled ring‐opening polymerization (CROP) and atom transfer radical polymerization (ATRP). 14‐Arm star PCL homopolymers (CDSi‐SPCL) were first synthesized by the CROP of CL using per‐6‐(tert‐butyldimethylsilyl)‐β‐CD as the multifunctional initiator in the presence of Sn(Oct)2 at 125 °C. Subsequently, the hydroxyl end groups of CDSi‐SPCL were blocked by acetyl chloride. After desilylation of the tert‐butyldimethylsilyl ether groups from the β‐CD core, 7 ATRP initiating sites were introduced by treating with 2‐bromoisobutyryl bromide, which further initiated ATRP of tert‐butyl acrylate (tBA) to prepare well‐defined A14B7 multimiktoarm star copolymers [CDS(PCL‐PtBA)]. Their molecular structures and physical properties were in detail characterized by 1H NMR, SEC‐MALLS, and DSC. The selective hydrolysis of tert‐butyl ester groups of the PtBA block gave the amphiphilic A14B7 multimiktoarm star copolymers [CDS(PCL‐PAA)]. These amphiphilic copolymers could self‐assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2961–2974, 2010  相似文献   

4.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

5.
Well‐defined star‐shaped hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) amphiphilic conetworks (APCNs) have been synthesized via the combination of ring opening polymerization (ROP) and click chemistry. Alkyne‐terminated six arm star‐shaped PCL (6‐s‐PCLx‐C?CH) and azido‐terminated PEG (N3‐PEG‐N3) are characterized by 1H NMR and FT‐IR. The swelling degree of the APCNs is determined both in water and organic solvent. This unique property of the conetworks is dependent on the nanophase separation of hydrophilic and hydrophobic phases. The morphology and thermal behaviors of the APCNs are investigated by SEM and DSC respectively. The biocompatibility is determined by water soluble tetrazolium salt reagents (WST‐1) assay, which shows the new polymer networks had good biocompatibility. Through in vitro release of paclitaxel (PTX) and doxorubicin (DOX), the APCNs is confirmed to be promising drug depot materials for sustained hydrophobic and hydrophilic drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 407–417  相似文献   

6.
Novel amphiphilic eight‐arm star triblock copolymers, star poly(ε‐caprolactone)‐block‐poly(acrylic acid)‐block‐poly(ε‐caprolactone)s (SPCL‐PAA‐PCL) with resorcinarene as core moiety were prepared by combination of ROP, ATRP, and “click” reaction strategy. First, the hydroxyl end groups of the predefined eight‐arm SPCLs synthesized by ROP were converted to 2‐bromoesters which permitted ATRP of tert‐butyl acrylate (tBA) to form star diblock copolymers: SPCL‐PtBA. Next, the bromide end groups of SPCL‐PtBA were quantitatively converted to terminal azides by NaN3, which were combined with presynthesized alkyne‐terminated poly(ε‐caprolactone) (A‐PCL) in the presence of Cu(I)/N,N,N,N,N″‐pentamethyldiethylenetriamine in DMF to give the star triblock copolymers: SPCL‐PtBA‐PCL. 1H NMR, FTIR, and SEC analyses confirmed the expected star triblock architecture. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl acrylate) blocks gave the amphiphilic star triblock copolymers: SPCL‐PAA‐PCL. These amphiphilic star triblock copolymers could self‐assemble into spherical micelles in aqueous solution with the particle size ranging from 20 to 60 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2905–2916, 2009  相似文献   

7.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

8.
Biodegradable and biocompatible PCL‐g‐PEG amphiphilic graft copolymers were prepared by combination of ROP and “click” chemistry via “graft onto” method under mild conditions. First, chloro‐functionalized poly(ε‐caprolactone) (PCL‐Cl) was synthesized by the ring‐opening copolymerization of ε‐caprolactone (CL) and α‐chloro‐ε‐caprolactone (CCL) employing scandium triflate as high‐efficient catalyst with near 100% monomer conversion. Second, the chloro groups of PCL‐Cl were quantitatively converted into azide form by NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction was carried out between azide‐functionalized PCL (PCL‐N3) and alkyne‐terminated poly(ethylene glycol) (A‐PEG) to give PCL‐g‐PEG amphiphilic graft copolymers. The composition and the graft architecture of the copolymers were characterized by 1H NMR, FTIR, and GPC analyses. These amphiphilic graft copolymers could self‐assemble into sphere‐like aggregates in aqueous solution with diverse diameters, which decreased with the increasing of grafting density. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A novel strategy was used to synthesize poly(ethylene glycol) (PEG) with “umbrella‐like” structure containing a single reactive group at the “handle” of the “umbrella”. 1‐(Bis(2‐hydroxyethyl)amino)‐3‐(1‐ethoxyethoxy)propan‐2‐ol was used to initiate the ring‐opening polymerization (ROP) of ethylene oxide (EO) in the presence of diphenylmethylpotassium (DPMK) to obtain three‐arm PEG (PEG3), then terminated by benzyl bromide or ethyl bromide. The resultant PEG3 was hydrolyzed to generate hydroxyl group at the conjunction point, and the second step ROP of EO was carried out using PEG3‐OH as macroinitiator in the presence of DPMK. The obtained four‐arm PEG (PEG4) contained a functional hydroxyl group at the end of the fourth arm, which could be easily modified to bioactive groups such as carboxyl, active ester, amino, etc. The well‐defined structure of “umbrella‐like” PEG was characterized by GPC, 1H NMR, and MALDI‐TOF MS in detail. Propionic acid succinimidyl ester of PEG4 (10 kDa) was utilized for protein conjugation with interferon α‐2b. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Two novel multifunctional precursors with eight alcoholic hydroxyls were synthesized by derivatization of resorcinarene. Well‐defined eight‐arm star‐shaped poly(ε‐caprolactone)s (SPCLs) with reasonably narrow molecular weight distributions have been successfully prepared using the precursors as macro‐initiators and yttrium tris(2,6‐di‐tert‐butyl‐4‐methylphenolate) [Y(DBMP)3] as catalyst at 40 °C. The molecular weight of SPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography, which could be well controlled by the molar ratio of the monomer to the precursor. The polymerization is more controllable with the precursor holding longer hydrocarbon chains as R groups. Differential scanning calorimetry analyses suggested that the maximal melting point, the crystallization temperature, and the degree of crystallinities of SPCLs increased with the increasing of the molecular weight, and were significantly lower than that of the counterpart linear poly(ε‐caprolactone) (LPCL). Furthermore, polarized optical microscopy indicated that LPCL showed fast crystallization rate with apparent Maltese cross pattern, whereas SPCL exhibited irregular spherulite and apparently slower crystallization rate. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2108–2118, 2008  相似文献   

11.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

12.
13.
The star graft copolymers composed of hyperbranched polyglycerol (HPG) as core and well defined asymmetric mixed “V‐shaped” identical polystyrene (PS) and poly(tert‐butyl acrylate) as side chains were synthesized via the “click” chemistry. The V‐shaped side chain bearing a “clickable” alkyne group at the conjunction point of two blocks was first prepared through the combination of anionic polymerization of styrene (St) and atom transfer radical polymerization of tert‐butyl acrylate (tBA) monomer, and then “click” chemistry was conducted between the alkyne groups on the side chains and azide groups on HPG core. The obtained star graft copolymers and intermediates were characterized by gel permeation chromatography (GPC), GPC equipped with a multiangle laser‐light scattering detector (GPC‐MALLS), nuclear magnetic resonance spectroscopy and fourier transform infrared. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1308–1316, 2009  相似文献   

14.
Side‐chain pyrene functional poly(vinyl alcohol) (PVA) was synthesized by using “click chemistry” strategy. First, partial tosylation of PVA with p‐toluene sulfonyl chloride were performed. The resulting PVA‐Ts polymer was then quantitatively converted into poly(vinyl alcohol)‐azide (PVA‐N3) in the presence of NaN3/DMF at 60 °C. Propargyl pyrene was prepared independently as a photoactive click component. Finally, azido functionalized PVA was coupled to propargyl pyrene with high efficiency by click chemistry. Incorporation of pyrene functionality in the resulting polymer was confirmed by spectral analysis. It is also shown that pyrene functionalized PVA (PVA‐Py) exhibited characteristic fluorescence properties and improved solubility in highly polar solvents such as water, DMSO, and DMF as well as less polar solvent such as THF compared with pristine PVA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1317–1326, 2009  相似文献   

15.
Despite the efficiency and robustness of the widely used copper‐catalyzed 1,3‐dipolar cycloaddition reaction, the use of copper as a catalyst is often not attractive, particularly for materials intended for biological systems. The use of photo‐initiated thiol‐ene as an alternative “click” reaction to synthesize “model networks” is investigated here. Poly(N‐isopropylacrylamide) precursors were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and were designed to have trithiocarbonate moieties as end groups. This structure design provides opportunity for subsequent end‐group modifications in preparation for thiol‐ene “click.” Two reaction routes have been proposed and studied to yield thiol and ene moieties. The advantages and disadvantages of each reaction path were investigated to propose a simple but efficient route to prepare copper‐free “click” hydrogels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4626–4636  相似文献   

16.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

17.
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006  相似文献   

18.
This article described the synthesis of cyclic poly(ε‐caprolactone) (PCL) via ring‐closing metathesis (RCM), ring closing enyne metathesis (RCEM), and “click” reaction of different difunctional linear PCL. Linear PCL precursors were prepared by ring‐opening polymerization (ROP) of ε‐caprolactone in bulk using 10‐undecen‐1‐ol or propargyl alcohol as the initiator, followed by reacting with corresponding acyl chloride containing vinyl or azido end group. The subsequent end‐to‐end intramolecular coupling reactions were performed under high dilution conditions. The successful transformation of linear PCL precursor to cyclic PCL was confirmed by Gel permeation chromatography, 1H NMR, and Fourier transform infrared measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3022–3033, 2009  相似文献   

19.
The synthesis of new ω‐phosphonic acid‐terminated poly(ethylene oxide) (PEOs) monomethyl ethers was investigated by the combination of Atherton–Todd or Kabachnik–Fields reactions and the “click” copper‐catalyzed 1,3‐dipolar cycloaddition of azides and terminal alkynes. The Atherton–Todd route fails to give the corresponding phosphonic acid‐terminated PEOs due to competitive cleavage of the P? N bond during the dealkylation step. In contrast, the Kabachnik–Fields route leads with very good yields to ω‐phosphonic acid‐PEO through “click” reaction of azido‐PEO onto dimethyl aminopropargyl phosphonate prepared by Kabachnik–Fields reaction between propargylbenzylimine and dimethyl phosphonate, followed by acidic hydrolysis. The reported methodology, precluding the use of anionic polymerization of ethylene oxide, leads to novel well‐defined phosphonic acid‐terminated PEOs from commercially available products in good yields. Moreover, such a strategy can be adapted to anchor phosphonic acid functionality onto a wide range of polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
A series of well‐defined ABC 3‐Miktoarm star‐shaped terpolymers [Poly(styrene)‐Poly(ethylene oxide)‐Poly(ε‐caprolactone)](PS‐PEO‐PCL) with different molecular weight was synthesized by combination of the “living” anionic polymerization with the ring‐opening polymerization (ROP) using macro‐initiator strategy. Firstly, the “living” poly(styryl)lithium (PS?Li+) species were capped by 1‐ethoxyethyl glycidyl ether(EEGE) quantitatively and the PS‐EEGE with an active and an ethoxyethyl‐protected hydroxyl group at the same end was obtained. Then, using PS‐EEGE and diphenylmethylpotassium (DPMK) as coinitiator, the diblock copolymers of (PS‐b‐PEO)p with the ethoxyethyl‐protected hydroxyl group at the junction point were achieved by the ROP of EO and the subsequent termination with bromoethane. The diblock copolymers of (PS‐b‐PEO)d with the active hydroxyl group at the junction point were recovered via the cleavage of ethoxyethyl group on (PS‐b‐PEO)p by acidolysis and saponification successively. Finally, the copolymers (PS‐b‐PEO)d served as the macro‐initiator for ROP of ε‐CL in the presence of tin(II)‐bis(2‐ethylhexanoate)(Sn(Oct)2) and the star(PS‐PEO‐PCL) terpolymers were obtained. The target terpolymers and the intermediates were well characterized by 1H‐NMR, MALDI‐TOF MS, FTIR, and SEC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1136–1150, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号