首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is demonstrated that the commonly applied self‐interaction correction (SIC) used in density functional theory does not remove all self‐interaction. We present as an alternative a novel method that, by construction, is totally free from self‐interaction. The method has the correct asymptotic 1/r dependence. We apply the new theory to localized f electrons in praseodymium and compare with the old version of SIC, the local density approximation (LDA) and with an atomic Hartree–Fock calculation. The results show a lowering of the f level, a contraction of the f electron cloud and a lowering of the total energy by 13 eV per 4 f electron compared to LDA. The equilibrium volume of the new SIC method is close to the ones given by LDA and the older SIC method and is in good agreement with experiment. The experimental cohesive energy is in better agreement using the new SIC method, both compared to LDA and another SIC method. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 247–252, 2001  相似文献   

2.
The double cation borohydride NaSc(BH4)4 has a total H2 content of 12.67 wt.% and has been suggested as a potential candidate for hydrogen storage applications. This study reports first‐principles calculations of the structure and reaction thermodynamics of NaSc(BH4)4. The calculations indicate that NaSc(BH4)4 is decomposed into a mixture of ScB2, NaBH4, and Na2(B10H10) with H2 release of 9.3 wt.% at 118 K at a partial pressure of H2 of 100 bar. Reactant compositions that can destabilize NaSc(BH4)4 were evaluated. This effort identified four destabilization reactions that are predicted to have reaction thermodynamics for hydrogen release within the temperature range of 78–109 K. Even though the reactions conclusively produce undesired compounds, such as refractory materials or kinetically stable B12H12‐containing species, the thermodynamic study suggests a direction for improving the thermodynamics of double cation borohydride‐based systems being actively considered for hydrogen storage applications. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The energetic and electronic structures of V‐doped anatase TiO2 have been investigated systematically by the GGA+U approach, including replacement of Ti by V in the absence and presence of oxygen vacancies and the presence of an interstitial site. It was found that V should exist as a V4+ ion in the replacement of Ti in the anatase lattice, the electron transitions of which to the conduction band from V 3d states are responsible for the experimentally observed visible light absorption. The influence of V dopant concentration on the electronic and magnetic properties is also discussed, such as the influence of the U value in systems containing oxygen vacancies and spin flip phenomena for interstitial V‐doping.  相似文献   

4.
The lighter alkaline‐earth pernitrides BeN2, MgN and CaN2 have been structurally predicted by a series of density‐functional (GGA/PBE/PAW) electronic‐structure calculations. Despite their crystal chemistry clearly pointing towards the formulation M2+N22? with an N? N distance of 1.26 Å, all phases turn out as metallic compounds which are exothermic with respect to the elements. The M2+ coordination numbers are a simple function of the cationic radius. The bulk moduli are about three times smaller than those of the noble‐metal pernitrides, a consequence of the smaller anionic charge in the former phases. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
The calculations based on linear combination of atomic orbitals basis functions as implemented in CRYSTAL09 computer code have been performed for cubic, tetragonal, orthorhombic, and rhombohedral modifications of BaTiO3 crystal. Structural and electronic properties as well as phonon frequencies were obtained using local density approximation, generalized gradient approximation, and hybrid exchange‐correlation density functional theory (DFT) functionals for four stable phases of BaTiO3. A comparison was made between the results of different DFT techniques. It is concluded that the hybrid PBE0 [J. P. Perdew, K. Burke, M. Ernzerhof, J. Chem. Phys. 1996, 105, 9982.] functional is able to predict correctly the structural stability and phonon properties both for cubic and ferroelectric phases of BaTiO3. The comparative phonon symmetry analysis in BaTiO3 four phases has been made basing on the site symmetry and irreducible representation indexes for the first time. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The energetic and electronic properties of N/V‐doped and N‐V‐codoped anatase TiO2 (101) surfaces are investigated by first‐principles calculations, with the aim to elucidate the relationship between the electronic structure and the photocatalytic performance of N‐V‐codoped TiO2. Several substitutional and interstitial configurations for the N and/or V impurities in the bulk phase and on the surface are studied, and the relative stability of different doping configurations is compared by the impurity formation energy. Systematic calculations reveal that N and V impurities can be encapsulated by TiO2 to form stable structures as a result of strong N‐V interactions both in the bulk and the surface model. Through analyzing and comparing the electronic structures of different doping systems, the synergistic doping effects are discussed in detail. Based on these discussions, we suggest that NOVTi codoping cannot only narrow the band gap of anatase TiO2, but also forms impurity states, which are propitious for the separation of photoexcited electron–hole pairs. In the case of NOVTi‐codoped TiO2 (101) surfaces, this phenomenon is especially prominent. Finally, a feasible synthesis route for NOVTi codoping into anatase TiO2 is proposed.  相似文献   

7.
In continuation of our recent combinatorial work on 810 X2YZ full Heusler alloys, a computational study of the same class of materials but with the inverse (XY)XZ crystal structure has been performed on the basis of first‐principles (GGA) total‐energy calculations using pseudopotentials and plane waves. The predicted enthalpies of formation evidence 27 phases to be thermochemically stable against the elements and the regular X2YZ type. A chemical‐bonding study yields an inherent tendency for structural distortion in a majority of these alloys, and we predict the existence of the new tetragonal phase Fe2CuGa (P42/ncm; a = 5.072 Å, c = 7.634 Å; c/a ≈ 1.51) with a saturation moment of μ = 4.69 μB per formula unit. Thirteen more likewise new, isotypical phases are predicted to show essentially the same behavior. Six phases turn out to be the most stable in the inverse tetragonal arrangement. The course of the magnetic properties as a function of the valence‐electron concentration is analyzed using a Slater‐Pauling approach. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

8.
An ab initio derived transferable polarizable force‐field has been developed for Zinc sulphide (ZnS) nanoparticle (NP) and ZnS NP‐PMMA nanocomposite. The structure and elastic constants of bulk ZnS using the new force‐field are within a few percent of experimental observables. The new force‐field show remarkable ability to reproduce structures and nucleation energies of nanoclusters (Zn1S1‐Zn12S12) as validated with that of the density functional theory calculations. A qualitative agreement of the radial distribution functions of Zn? O, in a ZnS nanocluster‐PMMA system, obtained using molecular mechanics molecular dynamics (MD) and ab initio MD (AIMD) simulations indicates that the ZnS–PMMA interaction through Zn? O bonding is explained satisfactorily by our force‐field. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Band gaps in solids and excitation energies in finite systems are underestimated significantly if estimated from differences between eigenvalues obtained within the local spin density approximation (LSDA). In this article we present results on 20 small- and medium-sized π-systems which show that HOMO–LUMO energy differences obtained with the B3LYP, B3P86, and B3PW91 functionals are in good agreement with vertical excitation energies from UV-absorption spectra. The improvement is a result of the use of the exact Hartree–Fock exchange with hybrid methods. Negative HOMO energies and negative LUMO energies do not provide good estimates for IPs and EAs. In contrast to Hartree–Fock theory, where IPs are approximated well and EAs are given poorly, DFT hybrid methods underestimate IPs and EAs by about the same amount. LSDA yields reasonable EAs but poor IPs. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1943–1953, 1997  相似文献   

10.
Linear polyacene (LPA) mimics containing multiple heterocycles have been computationally designed by annulating 1,4‐dihydro‐1,4‐azaborinine moieties to benzene (aB1–aB5), naphthalene (aN1–aN5), anthracene (aA1–aA5), and tetracene (aT1–aT5) cores. DFT studies conducted on them using M06L/6‐311++G(d,p) method reveal a perfect planar structure for all and suggest the utilization of nitrogen lone pairs for aromatic π‐electron delocalization. The computed values of aromaticity indices such as HOMA, NICS, and dehydrogenation energy (E dh) of heterocycles support strong aromatic character for each six‐membered ring in the LPA mimics. On the basis of the minimum value of the molecular electrostatic potential (V min) observed on each LPA unit in the LPA mimics, the extended delocalization of π‐electrons is verified. The energetic parameter E dh showed strong linear correlation with HOMA, NICS and V min parameters, which strongly supports the multidimensional character of aromaticity in LPA mimics. The electronic property modification is shown by the theoretical absorption spectra data and singlet‐triplet energy gap (ΔE ST). The bandgap and ΔE ST tunings are achieved for LPA mimics by selecting appropriate number of azaborinine type units and the size of LPA core used for annulation. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
The electronic and magnetic properties of SrFeO2 with different magnetic configurations have been calculated via the plane‐wave pseudopotential density functional theory method, using the experimental lattice parameters. The results give an antiferromagnetic ground state for SrFeO2 with an absolute magnetic moment agreeing very well with the experimental report. In comparison with the counterparts whose magnetic moments are parallel to the c axis, the structures with spin moments parallel to the a (or b) axis exhibit no observable preference in total energy, but show different density distributions of the Fe 3d and Fe 3d states. The square‐planar crystal field splits the Fe 3d orbitals into a high‐level d, a low d, and intermediate dxy and dxz or dyz components. The exchange splitting is larger than the crystal‐field splitting, resulting in the high‐spin Fe 3d states. Referred to the triplet O2, the O‐vacancy formation energy from SrFeO3 to SrFeO2 has been deduced as well, along with its dependence on the temperature and O2 partial pressure. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

12.
The adsorption properties of Cu, Ag, Ni, and Pd atoms on O2?, F, and F+ sites of MgO, CaO, SrO, and BaO (001) surfaces have been studied by means of density functional calculations. The examined clusters were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. The adsorption properties have been analyzed with reference to the basicity and energy gap of the oxide support in addition to orbital interactions. While the free Ni d9s1 triplet ground state is preserved on adsorption on the O2? sites of MgO, CaO, and SrO surfaces, it is no longer preserved on the O2? site of BaO. For all adsorbates considered, adsorption is found to be stronger on F+ sites compared with regular O2? sites. While on the O2? site, Pd and Ni form the most stable complexes, on the F site, Pd and Cu form the most stable counterparts. On the F+ site, the single valence electron of Cu and Ag atoms couples with the unpaired electron of the vacancy forming a covalent bond. As a result, the adsorption energies of these atoms on the F+ site are stronger than those on the F and O2? sites. The adsorption properties correlate linearly with the basicity and energy gap of the oxide support in addition to orbital interactions. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
Cerium intermetallic compounds exhibit anomalous physical properties such as heavy fermion and Kondo behaviors. Here, an ab initio study of the electronic structure, magnetic properties, and mixed valence character of Ce2Ni3Si5 using density functional theory (DFT) is presented. Two theoretical methods, including pure Perdew–Burke–Ernzerhof (PBE) and PBE + U , are used. In this study, Ce3+ and Ce4+ are considered as two different constituents in the unit cell. The formation energy calculations on the DFT level propose that Ce is in a stable mixed valence of 3.379 at 0 K. The calculated electronic structure shows that Ce2Ni3Si5 is a metallic compound with a contribution at the Fermi level from Ce 4f and Ni 3d states. With the inclusion of the effective Hubbard parameter (U eff), the five valence electrons of 5 Ce3+ ions are distributed only on Ce3+ 4f orbitals. Therefore, the occupied Ce3+ 4f band is located in the valence band (VB) while Ce4+ 4f orbitals are empty and Located at the Fermi level. The calculated magnetic moment in Ce2Ni3Si5 is only due to cerium (Ce3+) in good agreement with the experimental results. The U eff value of 5.4 eV provides a reasonable magnetic moment of 0.981 for the unpaired electron per Ce3+ ion. These results may serve as a guide for studying present mixed valence cerium‐based compounds. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
Understanding the electronic properties of silicon semiconductors is important for the preparation of high-performance semiconductor materials. We calculated the band entropies, electronic structures, and bonding properties of a silicon semiconductor using density functional theory and the binding-energy and bond-charge model. The relationship between Si energy and temperature was studied using the tight binding (TB) approximation and bond-order-length-strength (BOLS) theory (BOLS-TB), with the Si (111) surface as an example. The specific binding energies and bonding properties of Si atoms in different surface atomic layers are discussed by analyzing the X-ray photoelectron spectra of the Si (111) surface at 953 and 1493 K. This study improves our understanding of how surface properties reflect local bonding states and deepens our understanding of how atomic-relaxation-derived Hamiltonian perturbations and temperature influence the binding energy of the surface region. It also contributes to the development of Si-based semiconductor materials by providing new ideas and methods.  相似文献   

15.
A computational study of diatomic NiAl is reported. Molecular properties evaluated include the equilibrium bond length (re), equilibrium stretching frequency (ωe), doublet‐quartet energy splitting, and nickel‐aluminum bond strength. Several interesting conclusions have resulted from this research. First, convergence in calculated properties is smoother with recently reported correlation consistent basis sets than earlier basis sets for Ni and Al. Second, with the exception of bond strength, basis set limit properties extrapolated using correlation basis sets are in agreement with reported data. Third, this research suggests that caution may be needed with regard to the use of DFT for developing interatomic potentials for larger scale simulations. For example, B97‐1 showed better agreement with reported re for 2NiAl than B3LYP. However, the situation was reversed for the calculation of ωe. With respect to bond strength, the situation is unclear due to the scatter among experiment and calculations. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
TiO2 doped with transition metals shows improved photocatalytic efficiency. Herein the electronic and optical properties of Mo‐doped TiO2 with defects are investigated by DFT calculations. For both rutile and anatase phases of TiO2, the bandgap decreases continuously with increasing Mo doping level. The 4d electrons of Mo introduce localized states into the forbidden band of TiO2, and this shifts the absorption edge into the visible‐light region and enhances the photocatalytic activity. Since defects are universally distributed in TiO2 or doped TiO2, the effect of oxygen deficiency due to oxygen vacancies or interstitial Mo atoms is systemically studied. Oxygen vacancies associated with the Mo dopant atoms or interstitial Mo will reduce the spin polarization and magnetic moment of Mo‐doped TiO2. Moreover, oxygen deficiency has a negative impact on the improved photocatalytic activity of Mo‐doped TiO2. The current results indicate that substitutional Mo, interstitial Mo, and oxygen vacancy have different impacts on the electronic/optical properties of TiO2 and are suited to different applications.  相似文献   

17.
An axiomatic approach is herein used to determine the physically acceptable forms for general D‐dimensional kinetic energy density functionals (KEDF). The resulted expansion captures most of the known forms of one‐point KEDFs. By statistically training the KEDF forms on a model problem of noninteracting kinetic energy in 1D (six terms only), the mean relative accuracy for 1000 randomly generated potentials is found to be better than the standard KEDF by several orders of magnitudes. The accuracy improves with the number of occupied states and was found to be better than for a system with four occupied states. Furthermore, we show that free fitting of the coefficients associated with known KEDFs approaches the exactly analytic values. The presented approach can open a new route to search for physically acceptable kinetic energy density functionals and provide an essential step toward more accurate large‐scale orbital free density functional theory calculations.  相似文献   

18.
A series of mono‐, bis‐, and tris(phenoxy)–titanium(IV) chlorides of the type [Cp*Ti(2‐R? PhO)nCl3?n] (n=1–3; Cp*=pentamethylcyclopentadienyl) was prepared, in which R=Me, iPr, tBu, and Ph. The formation of each mono‐, bis‐, and tris(2‐alkyl‐/arylphenoxy) series was authenticated by structural studies on representative examples of the phenyl series including [Cp*Ti(2‐Ph? PhO)Cl2] ( 1 PhCl2 ), [Cp*Ti(2‐Ph? PhO)2Cl] ( 2 PhCl ), and [Cp*Ti(2‐Ph? PhO)3] ( 3 Ph ). The metal‐coordination geometry of each compound is best described as pseudotetrahedral with the Cp* ring and the 2‐Ph? PhO and chloride ligands occupying three leg positions in a piano‐stool geometry. The mean Ti? O distances, observed with an increasing number of 2‐Ph? PhO groups, are 1.784(3), 1.802(4), and 1.799(3) Å for 1 PhCl2 , 2 PhCl , and 3 Ph , respectively. All four alkyl/aryl series with Me, iPr, tBu, and Ph substituents were tested for ethylene homopolymerization after activation with Ph3C+[B(C6F5)4]? and modified methyaluminoxane (7% aluminum in isopar E; mMAO‐7) at 140 °C. The phenyl series showed much higher catalytic activity, which ranged from 43.2 and 65.4 kg (mmol of Ti?h)?1, than the Me, iPr, and tBu series (19.2 and 36.6 kg (mmol of Ti?h)?1). Among the phenyl series, the bis(phenoxide) complex of 2 PhCl showed the highest activity of 65.4 kg (mmol of Ti?h)?1. Therefore, the catalyst precursors of the phenyl series were examined by treating them with a variety of alkylating reagents, such as trimethylaluminum (TMA), triisobutylaluminum (TIBA), and methylaluminoxane (MAO). In all cases, 2 PhCl produced the most catalytically active alkylated species, [Cp*Ti(2‐Ph? PhO)MeCl]. This enhancement was further supported by DFT calculations based on the simplified model with TMA.  相似文献   

19.
The effect on the hydrogen storage attributes of magnesium hydride (MgH2) of the substitution of Mg by varying fractions of Al and Si is investigated by an ab initio plane‐wave pseuodopotential method based on density functional theory. Three supercells, namely, 2×2×2, 3×1×1 and 5×1×1 are used for generating configurations with varying amounts (fractions x=0.0625, 0.1, and 0.167) of impurities. The analyses of band structure and density of states (DOS) show that, when a Mg atom is replaced by Al, the band gap vanishes as the extra electron occupies the conduction band minimum. In the case of Si‐substitution, additional states are generated within the band gap of pure MgH2—significantly reducing the gap in the process. The reduced band gaps cause the Mg? H bond to become more susceptible to dissociation. For all the fractions, the calculated reaction energies for the stepwise removal of H2 molecules from Al‐ and Si‐substituted MgH2 are much lower than for H2 removal from pure MgH2. The reduced stability is also reflected in the comparatively smaller heats of formation (ΔHf) of the substituted MgH2 systems. Si causes greater destabilization of MgH2 than Al for each x. For fractions x=0.167 of Al, x=0.1, 0.167 of Si (FCC) and x=0.0625, 0.1 of Si (diamond), ΔHf is much less than that of MgH2 substituted by a fraction x=0.2 of Ti (Y. Song, Z. X. Guo, R. Yang, Mat. Sc. & Eng. A 2004 , 365, 73). Hence, we suggest the use of Al or Si instead of Ti as an agent for decreasing the dehydrogenation reaction and energy, consequently, the dehydrogenation temperature of MgH2, thereby improving its potential as a hydrogen storage material.  相似文献   

20.
To evaluate the electronic and optical properties of Cr‐doped anatase TiO2, three possible Cr‐doped TiO2 models, including Cr at a Ti site (model I), Cr at a Ti site with an oxygen vacancy compensation (model II), and an interstitial Cr site (model III), are studied by means of first principles density functional theory calculations. In model I, the splitting behavior of the Cr 3d states and the insulating properties are successfully depicted by the GGA+U method, from which it is proposed that Cr at a Ti site should exist as Cr4+ instead of the generally believed Cr3+. As a result, the electron transitions between these impurity states, the conduction band (CB), and the valence band (VB), as well as the d–d transitions between occupied and unoccupied Cr 3d states, provide a reasonable explanation for the experimentally observed major and minor absorption bands. In models II and III, the impurity states and associated optical transition processes—as well as the corresponding electron configurations—are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号