首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and characterization of new type photoluminescent, bulk copolymers of 2,7‐(2‐hydroxy‐3‐methacryloyloxypropoxy)naphthalene (2,7‐NAF.DM) with different vinyl comonomers (methyl methacrylate, 2‐hydroxyethyl methacrylate, butyl acrylate, divinylbenzene, styrene and N‐vinyl‐2‐pyrrolidone) are presented. The chemical structure of 2,7‐NAF.DM was confirmed by NMR, GC‐MS and elemental analysis. The copolymers were characterized by ATR and thermal (differential scanning calorimetry) analyses. Their luminescent properties were studied in terms of quantum efficiency (Φabs), which was shown to change in the range of 50–90% depending on the type of comonomer. It was found that the green‐emitting species in these polymers can be excited directly by low‐energy (400–520 nm) photoirradiation. These materials can be applied in the liquid or solid states in the form of powders, films or monoliths. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A new aromatic, tetrafunctional methacrylate monomer, 4,4′‐di(2‐hydroxy‐3‐methacryloyloxypropoxy)benzophenone, and its application to the synthesis of porous microspheres are presented. This new monomer was copolymerized with divinylbenzene in the presence of pore‐forming diluents. The properties of the obtained highly crosslinked microspheres were investigated as column packing for high‐performance liquid chromatography. Their porous structures in both dry and wet states were studied and compared with those of poly(divinylbenzene) and the less crosslinked copolymer of 2,3‐epoxypropyl methacrylate and divinylbenzene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7014–7026, 2006  相似文献   

3.
Precipitation polymerization of styrene (St)–divinylbenzene (DVB) has been carried out using acetonitrile/1‐propanol mixture as the reaction media and 2,2′‐azobisisobutyronitrile (AIBN) as initiator. Monodisperse micron‐sized poly(St‐co‐DVB) microspheres with clean and smooth surface were synthesized in the absence of any stabilizing agent such as surfactants or steric stabilizers. The effects of various polymerization parameters such as 1‐propanol fraction in the reaction media, initiator and total monomer concentration, DVB content, polymerization time and polymerization temperature on the morphology, particle size and size distribution were investigated. It was found that smoothly shaped stable particles were obtained when less than 70 vol% of 1‐propanol was used in the media. The particle size increased with the AIBN concentration, whereas the change of uniformity was less obvious. Monodisperse microspheres were obtained when the total monomers loading ranged from 0.5 to 3 vol%. The particle diameter ranged from 2.73 to 1.87 µm with an increasing DVB content and the uniformity was enhanced. In addition, the yield of microspheres increased with the increasing total monomer, initiator, and DVB concentration and polymerization time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A variety of polymer microspheres were successfully synthesized by the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of monomers by using monodisperse polymer microsphere having benzyl halide moiety as a multifunctional polymeric initiator. First, a series of monodisperse polymer microsphere having benzyl chloride with variable monomer ratio (P(St‐DVB‐VBC)) were synthesized by the precipitation polymerization of styrene (St), divinylbenzene (DVB), and 4‐vinylbenzyl chloride (VBC). Next, hairy polymer microspheres were synthesized by the surface‐initiated ATRP of various monomers with P(St‐DVB‐VBC) microsphere as a multifunctional polymeric initiator. The hair length determined by the SEC analysis of free polymer was increased with the increase of M/I. These hairy polymer microspheres were characterized by SEM, FT‐IR, and Cl content measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1296–1304  相似文献   

5.
 Crosslinked polystyrene microspheres with novel surface and inner morphologies were synthesized by seeded polymerization following a seed-swelling method, using uncrosslinked polystyrene microspheres as seeds and a mixture of toluene, styrene (St), and divinylbenzene (DVB) as the swelling agent. With the increasing toluene/ (St+DVB) ratio, the crosslinked particles changed from smooth-surfaced spheres to deformed spheres with dimples or heavy dents at the surface. A single hole inside the spherical particles was produced at low St/DVB ratio, while higher St/DVB ratios gave irregular dented or dimpled particles. Ultrathin cross-section observation by TEM revealed a non-uniformly crosslinked inner structure. Received: 20 January 1998 Accepted: 14 April 1998  相似文献   

6.
以苯乙烯为单体、二乙烯基苯(DVB)为交联剂,过氧化二苯甲酰(BPO)为引发剂研究了蒸馏沉淀聚合法制备聚合物微球过程中交联单体二乙烯苯的用量对单分散聚合物微球成球的影响。结果表明,增加二乙烯基苯的比例,即提高交联度有利于形成单分散的聚合物微球。  相似文献   

7.
Synthesis and properties of the new aromatic tetrafunctional methacrylate monomer 1,3‐di(2‐hydroxy‐3‐methacryloyloxypropoxy)benzene are presented. This monomer was applied for the synthesis of porous microspheres. It was copolymerized with trimethylolpropane trimethacrylate in the presence of pore‐forming diluents, decan‐1‐ol and chlorobenzene. Influence of diluents composition on their porous structures was studied. Thermal resistance and tendency to swell in different organic diluents for a chosen sample were also determined. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3190–3201, 2009  相似文献   

8.
具有核壳结构磁性复合微球的制备与表征   总被引:2,自引:0,他引:2  
龚涛  汪长春 《高分子学报》2008,(11):1037-1042
采用两步法制备了具有核壳结构的Fe3O4/P(MMA/DVB)(core)-P(St/GMA/DVB)(shell)磁性复合微球.首先,用改进的细乳液聚合制备了Fe3O4/P(MMA/DVB)微球;然后,加入总量不同的苯乙烯(St)、甲基丙烯酸缩水甘油酯(GMA)和二乙烯基苯(DVB),通过种子乳液聚合,制备了不同磁含量的核壳结构的磁性复合微球.分别用X-射线衍射(XRD)、高倍透射电镜(HR-TEM)、热重分析(TGA)、振动样品磁力计(VSM)等手段对磁性微球的性能进行了表征.实验结果表明,Fe3O4/P(MMA/DVB)微球的磁含量为84 wt%;通过改变加入壳层单体的量,核壳复合微球的磁含量可控在20 wt%~76 wt%之间.该微球具有超顺磁性,相应的饱和磁化强度为12~50Am2/kg.  相似文献   

9.
Herein, we report the synthesis and adsorption property of a novel chelating fiber containing azido group. Firstly, the brominated fiber (PP‐St‐DVB‐Br) was obtained via the reaction of polypropylene‐(g)‐styrene‐divinylbenzene fiber (PP‐St‐DVB) with bromine in CH2Cl2 solution. Then, azido chelating fiber (PP‐St‐DVB‐N3) was prepared by azidation of PP‐St‐DVB‐Br fiber. Its structure and properties were characterized by Fourier transform infrared, elemental analysis, thermogravimetric analysis, and chemical titration, respectively. The micromophology and functional group distribution in fibrous matrix were investigated by scanning electron microscopy‐energy dispersive spectroscopy. The results show that the chelating fiber has high functional group contents (2.11 mmol/g for PP‐St‐DVB‐N3) and uniform distribution. Different from granulate chelating resin, the novel fibrous adsorbent possesses excellent adsorption ability for Hg(II) and Pb(II) ions (408.9 mg/g for Hg2+ and 334.4 mg/g for Pb2+), and the adsorption capacity of the fiber has no loss until five cycles. The novel absorbent material shows the potential application prospect in the treatment of heavy metal wastewater. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
HU  Na  NI  Zhongbin  CHU  Hong  LIU  Xiaoya  CHEN  Mingqing 《中国化学》2009,27(11):2249-2254
Poly(4‐vinylpyridine) macromonomer (St‐P4VP) with a styryl end group was synthesized by atom transfer radical polymerization (ATRP) of 4‐vinylpyridine using p‐(chloromethyl)styrene (CMSt) as functional initiator, CuCl as catalyst and tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as ligand in 2‐propanol. The structure of St‐P4VP macromonomer was identified by proton nuclear magnetic resonance (1H NMR). The result of gel permeation chromatography (GPC) illustrated that the number‐average molecular weight of St‐P4VP could be controlled by adjusting polymerization conditions. Poly(4‐vinylpyridine) grafted polystyrene microspheres (P4VP‐g‐PSt) were then prepared by dispersion copolymerization of styrene with St‐P4VP macromonomers. The effects of polymerization reaction parameters such as medium polarity, concentration of St‐P4VP macromonomer and polymerization temperature on the sizes and size distribution of P4VP‐g‐PSt microspheres were investigated. The results of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and laser light scattering (LLS) indicated that mono‐dispersed P4VP‐g‐PSt microspheres with average diameters of 100–200 nm could be obtained when the molar ratio of St to St‐P4VP was 0.25:100 in ethanol/water mixed solvents (V/V=80:20) at 60°C. Such kind of graft copolymer microspheres was expected to be applied to many fields such as drug delivery system and protein adsorption/separation system due to their particular structure.  相似文献   

11.
In this article, synthesis, characterization, and thermal properties of diacrylic/divinylbenzene copolymers based on the new aromatic tetrafunctional acrylate monomers are presented. The new monomers were generated by treatment of epoxides derived from various aromatic diols: naphthalene-2,3-diol (NAF), biphenyl-4,4′-diol (BIF), bis(4-hydroxyphenyl)methanone (BEP) or 4,4′-thiodiphenol (BES), and epichlorohydrin with acrylic acid. The addition reaction was carried out by a ratio of 0.5 mol of suitable epoxy derivative and 1 mol of acrylic acid in the presence of 0.7 wt% of triethylbenzylammonia chloride (TEBAC) as a catalyst and 0.045 wt% of hydroquinone as a polymerization inhibitor. The chemical structure of the prepared acrylate monomers was confirmed by 13C NMR and GC MS spectra. The emulsion–suspension polymerization of acrylate monomers with divinylbenzene (DVB) in the presence of pore-forming diluents (toluene + decan-1-ol) allowed obtaining microspheres containing pendant functional groups (hydroxyl groups). This process was carried out at constant mol ratio of acrylate monomers: DVB (1:1), and constant volume ratio of pore-forming diluents to monomers (1:1). The different concentrations of toluene in the mixture with decan-1-ol were used for qualifying the effect of the diluents on the microsphere characteristics. The influence of synthesis’s parameters on the properties of copolymer beads, e.g., pore size and surface area by BET method, the surface texture by AFM, swelling behavior in polar and non-polar solvents as well as thermal stability by differential scanning calorimetry (DSC), and thermogravimetric analysis (TG) was studied and discussed.  相似文献   

12.
带羧基单分散彩色微球的制备   总被引:1,自引:0,他引:1  
采用两步活性溶胀种子聚合法, 制备了可用于免疫检测的3种不同颜色的表面带有羧基功能基的粒径在400—800 nm之间的彩色单分散微球. 先用无皂乳液聚合法制备出单分散聚苯乙烯种子, 然后用邻苯二甲酸二正丁酯(DBP)作为溶胀剂对微球进行溶胀, 溶涨后的种子模板再用混溶的苯乙烯、二乙烯苯、丙烯酸、双键彩色染料以及引发剂(BPO)溶胀, 升温聚合后得到理想的单分散微球. 考察了DBP和单体用量、各单体配比及染料对微球的形貌和单分散性的影响.  相似文献   

13.
Hollow poly(styrene–divinylbenzene) (P(S-DVB)) microspheres were fabricated via template-based method including synthesis of silica particles by sol-gel method, preparation of silica/P(S-DVB) particles by dispersion polymerization and chemical etching of silica cores by NaOH solution. TEM, FTIR and TG analyses confirmed that the hollow P(S-DVB) microspheres were successfully obtained. The morphology of hollow P(S-DVB) microspheres could be controlled by adjusting the amounts of DVB, AIBN and VTES, and the round-ball-like hollow P(S-DVB) microspheres were fabricated when the amount of DVB, AIBN and VTES was 30.0?wt%, 5.0?wt% and 30.0?vol% respectively. Both the size of silica particles and amount of monomers were regarded as the two key factors to control the particle size of the round-ball-like hollow P(S-DVB) microspheres.  相似文献   

14.
应用稀土化合物:环烷酸钕Nd(naph)_3和二(2-乙基己基)磷酸钕Nd·(P_(204)_3分别与三异丁基铝Al(i-Bu)_3组成络合催化剂引发苯乙烯均聚及其与二乙烯苯共聚。适宜的聚合温度为50℃:[Nd]=3×10~(-5)mol/ml;[M]=3×10~(-3)mol/ml;Al/Nd=10(摩尔比),并且催化剂按以下次序配制:钕化合物→溶剂→苯乙烯→三异丁基铝,苯乙烯的转化率在90%以上。溶剂种类及聚合条件不同,制得的聚苯乙烯可为白色或黄色粉末状无定形聚合物,分子量几百至上万。聚合体系中添加PeCl_3能抑制黄色产生。在共聚反应中,二乙烯苯比苯乙烯显示较高的反应活性。  相似文献   

15.
Precipitation polymerization of styrene (St) was carried out with pentaerythritol tetraacrylate (PETEA) to produce monodisperse crosslinked microspheres. A much safer ethanol replaced acetonitrile as a solvent in precipitation polymerization of monodisperse crosslinked poly(St‐co‐PETEA) microspheres. Monodisperse crosslinked microspheres with high monomer conversion were achieved within 4 hr. Uniform and well‐separated monodisperse were obtained in ethanol when PETEA concentration varied from 30 vol% to 90 vol% and the particle diameter decreased from 0.75 to 0.58 µm. The particle yield increased from 36.51 to 64.38% by increase in the initiator loading from 1 to 8 wt%. No coagulum occurred between particles when the polymerization time varied from 2 to 10 hr. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Poly(ethylene oxide) (PEO) star polymer with a microgel core was prepared by atom transfer radical poylmerization (ATRP) of divinyl benzene (DVB) with mono‐2‐bromoisobutyryl PEO ester as a macroinitiator. Several factors, such as the feed ratio of DVB to the initiator, type of catalysts, and purity of DVB, play important roles during star formation. The crosslinked poly(divinyl benzene) (PDVB) core was further obtained by the hydrolysis of PEO star to remove PEO arms. Size exclusion chromatography (SEC) traces revealed the bare core has a broad molecular weight distribution. PEO–polystyrene (PS) heteroarm star polymer was synthesized through grafting PS from the core of PEO star by another ATRP of styrene (St) because of the presence of initiating groups in the core inherited from PEO star. Characterizations by SEC, 1H NMR, and DSC revealed the successful preparation of the target star copolymers. Scanning electron microscopy images suggested that PEO–PS heteroarm star can form spherical micelles in water/tetrahydrofuran mixture solvents, which further demonstrated the amphiphilic nature of the star polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2263–2271, 2004  相似文献   

17.
以乙醇 乙二醇单甲醚 (EOH EGME)为介质 ,羟丙基纤维素 (HPC)为稳定剂 ,偶氮二异丁腈 (AIBN)为引发剂进行了苯乙烯和二乙烯基苯的分散共聚合研究 .制得粒径在 6~ 10 μm范围内的单分散交联聚苯乙烯微球 (CPS) .探讨了不同介质配比 ,以及苯乙烯、二乙烯基苯、引发剂的浓度对微球大小、粒径分布、聚合速率及稳定性的影响 .当苯乙烯和AIBN浓度增加时 ,聚合速率和平均粒子尺寸增加 ,而粒子分布变宽 ,粒子数先增加 ,而后降低 .随着EOH EGME比例的增加 ,平均粒子尺寸增加 ,而分布指数降低 ,稳定剂增加 ,粒子尺寸降低和粒子数增加 ,但对聚合速率及粒子分布影响不太明显 .另外还探讨了单体和交联剂的后滴加法对微球大小、粒径分布的影响  相似文献   

18.
A “continuous” emulsifier‐free emulsion copolymerization (CEFEP) of styrene and divinylbenzene (DVB) or methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) has been devised to produce uniform polymeric microspheres of narrow size distribution from 74 nm to 2 μm, depending on reaction time. Monomer and crosslinker vapors were fed continuously into a small reactor. We suggest that after initial nucleation, subsequent CEFEP proceeds near the surfaces of growing particles in a monomer‐swollen outer shell. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3181–3187, 2000  相似文献   

19.
An effective method was developed for synthesizing magnetite/polymer colloidal composite microspheres with controllable variations in size and shape of the nanostructures and desirable interfacial chemical functionalities, using surfactant-free seeded emulsion polymerization with magnetite (Fe(3)O(4)) colloidal nanocrystal clusters (CNCs) as the seed, styrene (St) as the monomer, and potassium persulfate (KPS) as the initiator. The sub-micrometer-sized citrate-acid-stabilized Fe(3)O(4) CNCs were first obtained via ethylene glycol (EG)-mediated solvothermal synthesis, followed by 3-(trimethoxysilyl)propyl methacrylate (MPS) modification to immobilize the active vinyl groups onto the surfaces, and then the hydrophobic St monomers were polymerized at the interfaces to form the polymer shells by seeded emulsion radical polymerization. The morphology of the composite microspheres could be controlled from raspberry- and flower-like shapes, to eccentric structures by simply adjusting the feeding weight ratio of the seed to the monomer (Fe(3)O(4)/St) and varying the amount of cross-linker divinyl benzene (DVB). The morphological transition was rationalized by considering the viscosity of monomer-swollen polymer matrix and interfacial tension between the seeds and polymer matrix. Functional groups, such as carboxyl, hydroxyl, and epoxy, can be facilely introduced onto the composite microspheres through copolymerization of St with other functional monomers. The resultant microspheres displayed a high saturation magnetization (46 emu/g), well-defined core-shell nanostructures, and surface chemical functionalities, as well as a sustained colloidal stability, promising for further biomedical applications.  相似文献   

20.
We present a facile access route to hydroxy‐functional narrow disperse microspheres of well‐defined grafting density (GD). Ethylene oxide has been grafted from highly crosslinked poly(divinyl benzene) microspheres by anionic ring‐opening polymerization using sec‐butyllithium as activator together with the phosphazene base t‐BuP4. Initially, core microspheres have been prepared by precipitation polymerization utilizing divinyl benzene (DVB, 80 wt.‐%). The grafting of poly(ethylene oxide) (PEO) from the surface resulted in the formation of functional core–shell microspheres with hydroxy‐terminal end groups. The number average particle diameter of the grafted microspheres was 3.6 µm and the particle weight increased by 5.7%. The microspheres were characterized by SEM, FT‐IR spectroscopy, elemental analysis, and fluorescence microscopy. The surface GD (determined via two methods) was 1.65 ± 0.06 and 2.09 ± 0.08 chains · nm−2, respectively.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号