首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a facile route to synthesize snowman‐like asymmetric composite particles via γ‐ray initiated seeded emulsion polymerization after a hydrolytic condensation process on the surface of second monomer swollen poly(styrene‐divinylbenzene‐acrylic acid) seeds. Effects of the amounts and kinds of second monomer and inorganic precursor, different radiation polymerization conditions including dose rates and absorbed doses on the morphology of the obtained particles were investigated. The obtained asymmetric particles can serve as ideal solid surfactants to stabilize the water‐in‐oil emulsions, and soap‐free hierarchical materials were obtained by polymerization of monomers in water or oil phase. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 339–348  相似文献   

2.
Polymer/SiO2 nanocomposite microspheres were prepared by double in situ miniemulsion polymerization in the presence of methyl methacrylate, butyl acrylate, γ‐methacryloxy(propyl) trimethoxysilane, and tetraethoxysilane (TEOS). By taking full advantage of phase separation between the growing polymer particles and TEOS, inorganic/polymer microspheres were fabricated successfully in a one‐step process with the formation of SiO2 particles and the polymerization of organic monomers taking place simultaneously. The morphology of nanocomposite microspheres and the microstructure, mechanical properties, thermal properties, and optical properties of the nanocomposite films were characterized and discussed. The results showed that hybrid microspheres had a raspberry‐like structure with silica nanoparticles on the shells of polymer. The silica particles of about 20 nm were highly dispersed within the nanocomposite films without aggregations. The transmittance of nanocomposite film was comparable to that of the copolymer film at around 70–80% from 400 to 800 nm. The mechanical properties and the fire‐retardant behavior of the polymer matrix were improved by the incorporation of silica nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3128–3134, 2010  相似文献   

3.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

4.
Polymers having a sugar moiety in the side group have been utilized as artificial matrices for cell adhesion in tissue engineering. In this study, methacrylamide ‐ based polymers having lactose and maltose derivative structures in the side group with various aliphatic hydrocarbon spacers were synthesized, and their cell adhesion properties were examined. Methacrylamide monomers were prepared by two step amidation of a spacer diamine, first with a sugar lactone and then with a methacrylic anhydride. These monomers were radically polymerized in aqueous media using 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as radical initiator to give the corresponding polymethacrylamide. Specific interaction between these polymers and animal cell was investigated by adhesion of proliferated human liver cancer cell (WRL) to the polymethacrylamides. WRL interacted with polymers having a lactose structure with a hexamethylene or 1,4‐cyclohexylene spacer by a specific manner and was promoted typical spheroid formation, while it did not interacted with polymers having a maltose structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4003–4010  相似文献   

5.
Graft polymerization initiated by diperiodatocuprate(III) complex (Cu(III)) initiator was found to be an effective and convenient method for graft polymerization of vinyl monomers onto macroporous polyacrylamide gels, the so‐called cryogels (pAAm‐cryogels). The effect of time, temperature, monomer and initiator concentration during the graft polymerization in aqueous and aqueous‐organic media was studied. The graft polymerization of water‐soluble monomers as [2‐(methacryloyloxy)ethyl]‐trimethylammonium chloride, 2‐hydroxyethyl methacrylate, N‐isopropylacrylamide, and N,N‐dimethylacrylamide proceeds with higher grafting yield in aqueous medium, as compared with that in aqueous‐organic media. Graft polymerization in aqueous‐organic media such as water–DMSO solutions allows grafting of water‐insoluble monomers such as glycidyl methacrylate and Ntert‐butylacrylamide with high grafting degrees of 100 and 410%, respectively. It was found that the deposition of initiator on the pore surface of cryogels promoted graft polymerization by facilitating the formation of the redox couple Cu(III)‐acrylamide group. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1952–1963, 2006  相似文献   

6.
Direct synthesis of charged hybrid particles in non‐polar media has not been widely described in the literature but can lead to many applications such as electrophoretic displays. In this work, we propose a way to synthesize charged hybrid particles within the electrophoretic medium (Toluene or Isopar G) in the presence or not of additives (Charge Control Agent, CCA). The particles synthesis was performed by Nitroxide‐mediated Radical Polymerization (NMRP) via dispersion polymerization in aliphatic hydrocarbon solvents leading to stable chargeable particles with a good size control. Hybrid particles are successfully charged by reaction with functional monomers or addition of CCA to obtain electrophoretic particles. The performance of a dual‐color red/white ink in a display was demonstrated with a test‐cell. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 338–348  相似文献   

7.
Photoinduced free radical polymerization of vinyl monomers by using semiconductor inorganic nanoparticles (NPs) is investigated. Zinc oxide and iron‐doped zinc oxide were used as photosensitive compounds to initiate the polymerization of acrylamide as a water‐soluble monomer in aqueous environment and methyl methacrylate as an oil‐soluble monomer in organic media under UV‐light irradiation. The method uses photochemically generated electrons and holes from the NPs to form initiating hydroxyl radicals in aqueous media, while tertiary amines and iodonium salt served as coinitiator in organic media. The initiation mechanism in organic media involves hydrogen abstraction or reduction processes via charge carriers, respectively. The kinetic of the polymerization in both environments was studied by means of a photo‐differential scanning calorimetry. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1500–1507  相似文献   

8.
In this study, the poly(N‐isopropylacrylamide‐methylacrylate acid)/Fe3O4/poly(N‐isopropylacrylamide‐methylacrylate acid) (poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA)) two‐shell magnetic composite hollow latex particles were synthesized by four steps. The poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles were synthesized first. Then, the second step was to polymerize NIPAAm, MAA, and crosslinking agent in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly(NIPAAm‐MAA) core–shell latex particles. Then, the core–shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, the Fe3O4 nanoparticles were generated in the presence of poly(NIPAAm‐MAA) hollow polymer latex particles and formed the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles. The fourth step was to synthesize poly(NIPAAm‐MAA) in the presence of poly(NIPAAm‐MAA)/Fe3O4 latex particles to form the poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA) two‐shell magnetic composite hollow latex particles. The effect of various variables such as reactant concentration, monomer ratio, and pH value on the morphology and volume‐phase transition temperature of two‐shell magnetic composite hollow latex particles was studied. Moreover, the latex particles were used as carriers to load with caffeine, and the caffeine‐loading characteristics and caffeine release rate of latex particles were also studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2880–2891  相似文献   

9.
N‐alkyl urea peptoid oligomers containing glucose or mannose have been synthesized and characterized. The oligomers were subsequently polymerized using a step‐growth polymerization with hexamethylene diisocyanate. Equal moles of both monomers were used to guarantee high‐molecular weight polymers. The polymers were characterized by gel permeation chromatography, nuclear magnetic resonance, and Fourier‐transform infrared spectroscopy, and contact angle measurements of solvent cast thin films. Sulfation of the final polymers was achieved using a SO3/pyridine complex in pyridine to afford the heparin biomimetics. The average degree of sulfation was calculated to be 3.5 sulfates per saccharide as measured by elemental analysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5230–5238  相似文献   

10.
A set of eight functional 4‐vinyl‐1,2,3‐triazolium monomers were synthesized using copper catalyzed azide‐alkyne 2 + 3 Hüisgen cycloaddition. These vinyl‐trizolium monomers readily polymerized via free radical polymerization. The physical properties of the vinyl‐triazolium based poly(ionic liquid)s (PILs) are strongly dependent on the pendant functional groups. These polymers were characterized for glass transition temperature (Tg), solubility, and the thermal decomposition. The vinyl‐triazolium based PILs offer an efficient route to highly functional PILs with the advantage of facile synthesis and the ability to incorporate many desirable functional moieties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 417–423  相似文献   

11.
A series of inorganic–organic hybrid block copolymers were synthesized via atom transfer radical polymerization using a fully condensed, ladder‐like structured polyphenylsilsesquioxane end‐functionalized macroinitiator. The inorganic portion, ladder‐like polyphenylsilsesquioxane, was synthesized in a one‐batch, base‐catalyzed system, whereas organic hard and soft monomers, styrene, and n‐butyl acrylate, were polymerized and copolymerized on the ends of the linear, inorganic backbone. Synthesized hybrid diblock, triblock, and random copolymers were characterized by 1H NMR, 29Si NMR, gel permeation chromatography, static light scattering, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. Hybrid block copolymers were well‐defined with low polydispersity (<1.4) and exhibited enhanced thermal properties in the form of increased glass transition and degradation onset temperatures over their organic analogues.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Well‐defined high oil‐absorption resin was successfully prepared via living radical polymerization on surface of polystyrene resin‐supported N‐chlorosulfonamide group utilizing methyl methacrylate and butyl methacrylate as monomers, ferric trichloride/iminodiacetic acid (FeCl3/IDA) as catalyst system, pentaerythritol tetraacrylate as crosslinker, and L ‐ascorbic acid as reducing agent. The polymerization proceeded in a “living” polymerization manner as indicated by linearity kinetic plot of the polymerization. Effects of crosslinker, catalyst, macroinitiator, reducing agent on polymerization and absorption property were discussed in detail. The chemical structure of sorbent was determined by FTIR spectrometry. The oil‐absorption resin shows a toluene absorption capacity of 21 g g?1. The adsorption of oil behaves as pseudo‐first‐order kinetic model rather than pseudo‐second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Living‐radical polymerization of acrylates were performed under emulsion atom transfer radical polymerization (ATRP) conditions using latexes prepared by a nanoprecipitation technique previously employed and optimized for the polymerization of styrene. A macroinitiator of poly(n‐butyl acrylate) prepared under bulk ATRP was dissolved in acetone and precipitated in an aqueous solution of Brij 98 to preform latex particles, which were then swollen with monomer and heated. Various monomers (i.e. n‐butyl acrylate, styrene, and tert‐butyl acrylate) were used to swell the particles to prepare homo‐ and block copolymers from the poly(n‐butyl acrylate) macroinitiator. Under these conditions latexes with a relatively good colloidal stability were obtained. Furthermore, amphiphilic block copolymers were prepared by hydrolysis of the tert‐butyl groups and the resulting block copolymers were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bulk morphologies of the polystyrene‐b‐poly(n‐butyl acrylate) and poly(n‐butyl acrylate)‐b‐poly(acrylic acid) copolymers were investigated by atomic force microscopy (AFM) and small angle X‐ray scattering (SAXS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 625–635, 2008  相似文献   

14.
A universal method for the synthesis of water‐based inorganic–polymer hybrid particles was developed in which no organic solvent is required. To demonstrate the versatility of this process, zinc phosphate, calcium carbonate, and barium sulfate were chosen as different pigment examples which additionally can be utilized for functional coating applications. Furthermore, a complex polymeric composition based on epoxy–acrylic–styrene was chosen to illustrate the versatility from a soft matter point of view. The overall synthesis process was carried out by coemulsification of two inverse miniemulsions, containing two precursors, surrounded with a polymerizable continuous phase. This was then transferred to a direct miniemulsion by addition to a surfactant solution and subsequent homogenization followed by radical polymerization of the vinylic monomers. To our knowledge, this is the first work where a polymerizable continuous phase has been used in an inverse miniemulsion formation followed by transfer to a direct miniemulsion, followed by polymerization, so that the result is a water‐based dispersion. The resultant dispersion was characterized by dynamic light scattering; the particles were investigated via transmission electron microscopy with in situ determination of crystallinity using electron diffraction. Elemental analysis was also performed for the particles and the polymerized miniemulsions using X‐ray fluorescence and inductively coupled plasma‐optical emission spectroscopy, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A well‐defined and monofunctional poly(3‐hexylthiophene)‐based (P3HT) macroinitiator has been obtained through a clean, simple, and an efficient multistep synthesis process. The macroinitiator is obtained via intermolecular radical 1,2‐addition onto an ω‐acrylate‐terminated P3HT macromonomer. In a second step, well‐defined rod‐coil block copolymers were obtained by nitroxide‐mediated radical polymerization (NMRP) using the so‐called Blocbuilder®. The polymerization was found to be controlled with various monomers such as styrene, isoprene, 4‐vinylpyridine, or methyl acrylate. This process constitutes a very promising way to obtain versatile and clean materials for organic electronics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
We report the facile synthesis and characterization of a class of thienothiophene polymers with various lengths of alkyl side chains. A series of 2‐alkylthieno[3,4‐b]thiophene monomers (Ttx) have been synthesized in a two‐step protocol in an overall yield of 28–37%. Poly(2‐alkylthieno[3,4‐b]thiophenes) (PTtx, alkyl: pentyl, hexyl, heptyl, octyl, and tridecyl) were synthesized by oxidative polymerization with FeCl3 or via Grignard metathesis (GRIM) polymerization methods. The polymers are readily soluble in common organic solvents. The polymers synthesized by GRIM polymerization method (PTtx‐G) have narrower molecular weight distribution (?) with lower molecular weight (Mn) than those synthesized by oxidative polymerization (PTtx‐O). The band structures of the polymers with various lengths of alkyl side chains were investigated by UV–vis spectroscopy, cyclic voltammetry, and ultraviolet photoelectron spectroscopy. These low‐bandgap polymers are good candidates for organic transistors, organic light‐emitting diodes, and organic photovoltaic cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Two, functional, cyclic carbonate monomers, 5‐methyl‐5‐methoxycarbonyl‐1,3‐dioxan‐2‐one and 5‐methyl‐5‐ethoxy carbonyl‐1,3‐dioxan‐2‐one, were synthesized starting from 2,2‐bis(hydroxymethyl) propionic acid. The ring‐opening polymerization of the cyclic carbonate monomers in bulk with stannous 2‐ethylhexanoate as a catalyst under different conditions was examined. The results showed that the yield and molecular weight of polycarbonates were significantly influenced by the reaction conditions. The polycarbonates obtained were characterized by IR, 1H NMR, and differential scanning calorimetry. Their molecular weight was measured by gel permeation chromatography. The in vitro biodegradation and controlled drug‐release properties of the polycarbonates were also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4001–4006, 2003  相似文献   

18.
A one‐step process is reported to directly synthesize blends of poly(trimethylene carbonate) (PTMC) with a modified granular starch. Trimethylene Carbonate (TMC) ring‐opening polymerization is performed in the presence of native starch particles in bulk conditions at 150 °C and the efficiency of metal‐free organic catalysts (TBD and phosphazene superbases P1‐t‐Oct, P2‐t‐bu, and P4‐t‐bu) are investigated to replace the organo‐metallic stannous octanoate initiator. TMC monomer is successively converted into PTMC and the robustness of organic catalysts is highlighted with significant activities at very low concentrations (<100 ppm), where stannous octanoate is inefficient. Reactivity of starch toward TMC ROP is deeply investigated by NMR techniques and a starch‐graft‐PTMC is indirectly evidenced. Starch substitution degree reaches 0.9% indicating that PTMC grafting only occurs at the surface of swollen granular starch. PTMC graft length from the starch surface remained low in the range 2–12 and model ROP reactions highlight the role of TMC hydrolysis on PTMC graft length. Despite low PTMC grafts, a fine dispersion of intact starch particles into the PTMC matrix is evidenced. Consequently, metal‐free organic catalysts at low concentrations are promising candidates for synthesizing blends of PTMC with high loadings of surface‐modified starch (32% by weight) in 2 min within a one‐step process. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 493–503  相似文献   

19.
Chemistry of 2‐oxazolines is involved in the polymer synthesis fields of cationic ring‐opening polymerization (CROP) and enzymatic ring‐opening polyaddition (EROPA), although both polymerizations look like a quite different class of reaction. The key for the polymerization to proceed is combination of the catalyst (initiator) and the design of monomers. This article describes recent developments in polymer synthesis via these two kinds of polymerizations to afford various functional polymers having completely different structures, poly(N‐acylethylenimine)s via CROP and 2‐amino‐2‐deoxy sugar unit‐containing oligo and polysaccharides via EROPA, respectively. From the viewpoint of reaction mode, an acid‐catalyzed ring‐opening polyaddition (ROPA) is considered to be a crossing where CROP and EROPA meet. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1251–1270, 2010  相似文献   

20.
The synthesis of new polymer colloids based on renewable resources, such as sugar‐derived monomers, is nowadays a matter of interest. These new polymeric particles should be useful in biomedical applications, such as drug delivery, because of their assumed biodegradability. In this work, two new families of polymer latex particles, based on a sugar‐derived monomer, 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐α‐D ‐glucofuranose (3‐MDG), were produced and characterized. The syntheses of poly(3‐MDG) crosslinked particles and those obtained by copolymerization with methacrylic acid (MAA), poly(3‐MDG‐co‐MAA) crosslinked particles, were prepared by surfactant‐free emulsion polymerization in a batch reactor. The average particle diameter evolutions, the effect of pH of the dispersion medium on the final average diameters, together with the microscopic and morphological analysis of the particle's surface and inner dominium, were analyzed. Poly(3‐MDG‐co‐EGDMA) stable particles were obtained by adding low amounts of initiator. The surface‐charge density of these particles corresponded to the sulfate groups coming from the initiator. In the second family of latices, poly(3‐MDG‐co‐MAA‐co‐EGDMA) particles, DCP measurements and SEM and TEM observations showed that the sizes and surface characteristics depended on the amounts of MAA and crosslinker used in the reaction mixture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 443–457, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号