首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic algorithm (GA) coupled with a tight‐binding (TB) interatomic potential was used to search for the low‐energy structures of the medium‐sized Nin (n = 20?30) clusters. The low‐energy candidate structures from the GA/TB search were further optimized by using the density functional theory calculations with the Perdew, Burke, and Ernzerhof exchange‐correlation energy functional. The obtained lowest‐energy structures of the medium‐sized Nin (n = 20?30) clusters are shown to exhibit double icosahedron‐based motif. The properties of the nickel clusters including binding energies, second differences in energy, and especially magnetic properties have also been studied. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

2.
The seven‐membered beryllium‐containing heterocycle beryllepin, C6H6Be, has been examined computationally at the B3LYP/6‐311++G** density functional level of theory. Beryllepin is best described as a planar singlet heterocyclic conjugated triene with marginal aromatic character containing a C–Be–C moiety forced to be nonlinear (∠C‐Be‐C = 146.25°) by the cyclic constraints of the seven‐membered ring. The molecule can be considered to be derived from a benzene‐like system in which a neutral beryllium atom has been inserted between two adjacent carbon atoms. The 11 other possible “beryllium‐inserted benzenes,” C6H6Ben, n = 2–6, have also been investigated. Only two of these heterocyclic systems, the eight‐membered 1,4‐diberyllocin and the nine‐membered 1,4,7‐triberyllonin, were found to be stable, singlet‐ground‐state systems, albeit with little aromatic character. Of the remaining nine beryllium‐inserted benzenes, with the exception of the 11‐membered ring containing five beryllium atoms and the 12‐membered ring containing six beryllium atoms, which were calculated to exist as a ground state pentet and septet, respectively, all were calculated to be ground state triplet systems.  相似文献   

3.
The density functional theory (DFT) and the complete active space self‐consistent‐field (CASSCF) method have been used for full geometry optimization of carbon chains C2nH+ (n = 1–5) in their ground states and selected excited states, respectively. Calculations show that C2nH+ (n = 1–5) have stable linear structures with the ground state of X3Π for C2H+ or X3Σ? for other species. The excited‐state properties of C2nH+ have been investigated by the multiconfigurational second‐order perturbation theory (CASPT2), and predicted vertical excitation energies show good agreement with the available experimental values. On the basis of our calculations, the unsolved observed bands in previous experiments have been interpreted. CASSCF/CASPT2 calculations also have been used to explore the vertical emission energy of selected low‐lying states in C2nH+ (n = 1–5). Present results indicate that the predicted vertical excitation and emission energies of C2nH+ have similar size dependences, and they gradually decrease as the chain size increases. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

4.
ABSTRACT: Stability and electronic property calculations are performed systematically based on density functional theory at the B3LYP/6‐31G(d) level for Td C28 fullerene and exohedral fluorine and trifluoromethyl derivatives C28F4–n(CF3)n (n = 0,1,2,3,4). All the exohedral derivatives that are on the potential energy surfaces are kinetically stable with large HOMO‐LUMO gaps. Further investigations show that binding energies of C28F4–n(CF3)n (n = 0,1,2,3,4) molecules are positive, suggesting they are thermodynamically stable. An analysis of the π‐orbital axis vector indicates the high strain in Td C28 cage could be greatly released by fluorine and trifluoromethyl decorations. Mulliken charge analysis reveals that adding different electron groups to the Td C28 cage can cause remarkably different charge populations. In addition, from the ionization potential and electron affinity investigations, the C28F4–n(CF3)n (n = 0,1,2,3,4) molecules manifest weak redox properties. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

5.
Based on the D3 C32 fullerene, the equilibrium geometries, electronic structures, and binding energies of the endohedral fullerenes X0/n+@C32 (X = H, Li, Na, K, Be, Mg, Ca, B, Al, C, Si, N, P, n = 1–3) have been calculated using the DFT/B3LYP/6‐31G(d) method. The results show that the C32 cages are slightly enlarged due to encapsulation, and the sizes of non‐neutral molecules are smaller than the corresponding neutral ones. Cages containing Li, Na, and Ca and most of the cations, except Na+ and K+, are energetically favorable. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
The charge exchange and charge separation processes of a series of [C3Hn]2+ and [C3Dn]2+ (n = 1–6) dications have been investigated experimentally in a mass spectrometer of reversed geometry. The relative reaction cross-sections for charge exchange with nitrogen exhibited a 20-fold variation which has implications for the interpretation of 2E spectra with respect to dication relative intensities. Charge separation resulting in deprotonation was observed for all [C3Dn]2+ species investigated, while de-deuteronation was observed for [C3Dn]2+ (n = 1–4) only. Intercharge separations calculated from the observed ion kinetic energies released upon charge separation suggest linear structures for [C3Dn]2+ and [C3Dn]2+ (n = 1–2) and cyclic structures for [C3Dn]2+ (n = 3–6) and [C3Dn]2+ (n = 3–4).  相似文献   

7.
Density functional theory B3LYP with 6-31G* basis set has been used to investigate the geometries, rotational constants, dipole moments, energy gaps and vibrational frequencies of nine series of isomers of C20H3 radical. The result shows that the bowl-like structure with C1 symmetry is the most stable structure, in which the three hydrogen atoms locate on the edge carbon atoms, and the two hydrogen atoms are neighbouring and the other one has a two- carbon atom interval to the neighbouring hydrogen. In addition, the relationship between the energy and the position of one hydrogen atom from end to middle on the linear structures of C20H3 radical with two hydrogens atoms located on two ends was obtained, which shows the energy increase monotonously. Furthermore, hydrogenation can relax the strain and make the isomer of C20 more stable.  相似文献   

8.
Unique hollow‐caged (MN4)nC6(10 ? n) (M = Zn, Mg, Fe, n = 1?6) complexes designed by introduction of n porphyrinoid fragments in C60 fullerene structure were proposed and the atomic and electronic structures were calculated using LC‐DFT MPWB95 and M06 potentials and 6‐311G(d)/6‐31G(d) basis sets. The complexes were optimized using various symmetric configurations from the highest Oh to the lowest C1 point groups in different spin states from S = 0 (singlet) to S = 7 (quindectet) for M = Fe to define energetically preferable atomic and electronic structures. Several metastable complexes were determined and the key role of the metal ions in stabilization of the atomic structure of the complexes was revealed. For Fe6N24C24, the minimum energy was reported for C2h, D2h, and D4h symmetry of pentet state S = 2, so the complex can be regarded as unique molecular magnet. It was found that the metal partial density of states determine the nature of HOMO and LUMO levels making the clusters promising catalysts. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
We studied the attraction between [C2Hn] and Tl(I) in the hypothetical [C2Hn–Tl]+ complexes (n = 2,4) using ab initio methodology. We found that the changes around the equilibrium distance C–Tl and in the interaction energies are sensitive to the electron correlation potential. We evaluated these effects using several levels of theory, including Hartree–Fock (HF), second‐order Møller–Plesset (MP2), MP4, coupled cluster singles and doubles CCSD(T), and local density approximation augmented by nonlocal corrections for exchange and correlation due to Becke and Perdew (LDA/BP). The obtained interaction energies differences at the equilibrium distance Re (C–Tl) range from 33 and 46 kJ/mol at the different levels used. These results indicate that the interaction between olefinic systems and Tl(I) are a real minimum on the potential energy surfaces (PES). We can predict that these new complexes are viable for synthesizing. At long distances, the behavior of the [C2Hn]–Tl+ interaction may be related mainly to charge‐induced dipole and dispersion terms, both involving the individual properties of the olefinic π‐system and thallium ion. However, the charge‐induced dipole term (R?4) is found as the principal contribution in the stability at long and short distances. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

10.
The potential energy surfaces of both neutral and dianionic SnC2P2R2 (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6‐311+G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2‐diphosphocyclobutadiene ring (1,2‐DPCB) is capped by the Sn. Interestingly, the structure established by X‐ray diffraction analysis, for R=tBu, is a 1,3‐DPCB ring capped by Sn and it is 2.4 kcal mol?1 higher in energy than the 1,2‐DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3‐DPCB ring, which might originate from the synthetic precursor ZrCp2tBu2C2P2. In the case of the dianionic isomers we observe only a 6π‐electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes. 1 , 4 , 19 The existence of large numbers of cluster‐type isomers in neutral and 6π‐planar structures in the dianions SnC2P2R22? (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D π aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C5H5+ analogues indicates that Sn might be a better isolobal analogue to P+ than to BH or CH+. The variation in global minima in these C5H5+ analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker pπ–pπ bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C5H5? analogues have 6π‐planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the π orbitals involved, and 2) effective overlap of orbitals.  相似文献   

11.
The structures and stability of F4F6‐(BN)n polyhedrons (n = 20–30) with the alternation of B and N atoms were studied with DFT method. The calculation results reveal that the atoms at square–square fusions with large pyramidalization angles are remarkably extruded out of the surfaces of (BN)n polyhedrons. The energetically favorable isomers do not contain square–square bonds and the energies of those isomers containing square–square bonds increase with the number of square–square bonds linearly, demonstrating that the energetically favorable structures of F4F6‐(BN)n polyhedrons satisfy the isolated square rule and square adjacency penalty rule. The atom pyramidalization determines the stability of the isomers. The binding energy is fitted to the numbers of vertices formed from different faces and a model is proposed to predict the relative stability of these polyhedral molecules. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
Calculations in the framework of the density functional theory are performed to study the lowest‐energy isomers of coinage metal fluoride and chloride clusters (MnFn, MnCln, M = Cu, Ag, or Au, n = 1–6). For all calculated species starting from the trimers the most stable structures are found to be cyclic arrangements. However, planar rings are favored in the case of metal fluorides whereas metal chlorides prefer nonplanar cycles. Calculated bond lengths and infrared frequencies are compared with the available experimental data. The nature of the bonding, involving both covalent and ionic contributions, is characterized. The stability and the fragmentation are also investigated. Trimers are found to be particularly stable when considering the Gibbs free energies. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The sum of electronic and thermal free energy differences between singlet and triplet states (Δ Gt‐s) is calculated for C4H4M, C4H6M, and C4H8M (M = C, Si, Ge, Sn, and Pb) at B3LYP/6‐311++G (3df,2p) level. Singlet–triplet splitting (Δ Gt‐s) is compared for three analogs C4H4M, C4H6M, and C4H8M. The change order of Δ Gt‐s is (except for M = C) C4H6M > C4H8M > C4H4M. The results of homodesmotic reaction energies show the most stability for singlet state of C4H6M with respect to C4H4M and C4H8M. In contrast, the triplet state of C4H4M (except for M = C) is the most stable with respect to C4H6M and C4H8M. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:245–251, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20428  相似文献   

14.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004  相似文献   

15.
Abstract

Density functional theory (DFT) calculations are performed to characterize Si20-nH20-nPnheterofullerenes (n = 1, 2, 5, and 10), and to examine the stability of encapsulated X@Si20-nH20-nPnwhere X = Li, Na, and K. To this aim, 29Si, 31P, and 1H chemical shielding (CS) tensors as well as natural charges are calculated for the optimized structures. The local structures around silicon as well as phosphorus nuclei are found to show a good correlation with CSs. However, the similar values of 1H calculated CSs (26–28 ppm) obtained for all the heterofullerenes mean hydrogen atoms do not detect the local structure around the adjacent silicon and also do not distinguish between isomers of heterofullerenes and the number of P dopants. According to calculated endo-hedral inclusion energies (Einc), formation of the Li@Si20-nH20-nPncomplexes, unlike the K@Si20-nH20-nPnones, are exothermic while Eincof the Na@Si20-nH20-nPncomplexes strongly depends on the position and number of P dopants. Moreover, binding energies for the considered models are found to be in the order of Si20-nH20-nPn> Li@Si20-nH20-nPn> Na@Si20-nH20-nPn> K@Si20-nH20-nPnwhile strongly depending on the pattern of P dopants on the surface of the cage.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures and tables]  相似文献   

16.
Structures, energies, and vibrational frequencies have been calculated for two C30H20 isomers with a dodecahedrane cage and two pentaprismane cages at the B3LYP/6‐31G* level of theory. Thus, two C30H20 isomers have the form of coplanar tri‐cage molecules. The symmetry of one C30H20 isomer is of D5d and that of another is of C2V. The heat of formation for two C30H20 isomers have been estimated. Heats of formation of two C30H20 isomers as well as the vibrational analysis indicate that two C30H20 isomers enjoy sufficient stability to allow for its experimental preparation. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

17.
Various properties of typical structures of water clusters in the n = 2–34 size regime with the change of cluster size have been systematically explored. Full optimizations are carried out for the structures presented in this article at the Hartree–Fock (HF) level using the 6‐31G(d) basis set by taking into account the positions of all atoms within the cluster. The influence of the HF level on the results has been reflected by the comparison between the binding energies of (H2O)n (n = 2–6, 8, 11, 13, 20) calculated at the HF level and those obtained from high‐level ab initio calculations at the second‐order Møller–Plesset (MP2) perturbation theory and the coupled cluster method including singles and doubles with perturbative triples (CCSD(T)) levels. HF is inaccurate when compared with MP2 and CCSD(T), but it is more practical and allows us to study larger systems. The computed properties characterizing water clusters (H2O)n (n = 2–34) include optimal structures, structural parameters, binding energies, hydrogen bonds, charge distributions, dipole moments, and so on. When the cluster size increases, trends of the above various properties have been presented to provide important reference for understanding and describing the nature of the hydrogen bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

18.
The structures, stability patterns of C26H n (n = 2) formed from the initial D 3h C26 fullerene were investigated by use of second-order-Moller–Plesset perturbation theory. The study of the stability patterns of hydrogenation reaction on C26 cage revealed that type (β) carbons were the active site and the analyses of π-orbital axis vector indicated that the reactivity of C26 was the result of the high strain and the hydrogenation reaction on C26 cage was highly exothermic. The calculated 13C NMR spectra of C26H n (n = 2) predicted that the two sp 3 hybridization carbons in C26H n (n = 2) obviously moved to high field compare with that in D 3h C26. Hence, the C26H2 should be obtained and detected experimentally. Similarly, the structures and reaction energies of C26H n (n = 4, 6, 8) were further studied at HF/6-31G*, B3LPY/6-31G* and MP2/6-31G* level. The results suggested the hydrogenation products of C26, C26H n (n = 4, 6, 8), were more stable than the C26 cage.  相似文献   

19.
“One‐pot” substitution of the twenty hydrogen atoms in pentagonal dodecahedrane (C20H20) by OH, F, Cl, and Br atoms is explored. Electrophilic insertion of oxygen atoms with DMDO and TFMDO as oxidizing reagents ended, far off the desired C20(OH)20, in complex polyol mixtures (up to C20H10(OH)10 decols, a trace of C20H(OH)19?). Perfluorination was successful in a NaF matrix but (nearly pure) C20F20 could be secured only in very low yield. “Brute‐force” photochlorination (heat, light, pressure, time) provided a mixture of hydrogen‐free, barely soluble C20Cl16 dienes in high yield and C20Cl20 as a trace component. Upon electron‐impact ionization of the C20Cl16 material sequential loss of the chlorine atoms was the major fragmentation pathway furnishing, however, only minor amounts of chlorine‐free C20+ ions. “Brute‐force” photobrominations delivered an extremely complex mixture of polybromides with C20HBr13 trienes as the highest masses. The MS spectra exhibited exclusive loss of the Br substituents ending in rather intense singly, doubly, and triply charged C20H4–0+(2+)(3+) ions. The insoluble ~C20HBr13 fraction (C20Br14 trienes as highest masses) obtained along a modified bromination protocol, ultimately allowed the neat mass selection of C20? ions. The C20Cl16 dienes and C20H0–3Br14–12 tri‐/tetraenes, in spite of their very high olefinic pyramidalization, proved resistant to oxygen and dimerization (polymerization) but added CH2N2 smoothly. Dehalogenation of the respective cycloaddition products through electron‐impact ionization resulted in C22–24H4–8+(2+) ions possibly constituting bis‐/tris‐/tetrakis‐methano‐C20 fullerenes or partly hydrogenated C22, C23, and C24 cages.  相似文献   

20.
The occurrence of bifurcate H‐bonds CAr–H···O=C in the structure of (diaryl)‐tetrahydrofuranones was experimentally demonstrated using different methods and techniques. The consistent increasing spin–spin coupling constants 1J(C,H) of the ortho‐H‐atoms and low‐field shift of vC=O in IR spectra of 2,2‐(diaryl)tetrahydrofuran‐3(2H)‐ones relative to their 5,5‐diaryl counterparts, as well as pronounced dependence of the ortho‐C–H H‐atoms chemical shifts on the temperature and solvent polarity along with X‐ray diffraction analysis data unambiguously point to the existence of weak CAr–H···O=C H‐bonds in these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号