首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First principles molecular orbital and plane‐wave ab initio calculations have been used to investigate the structural and energetic properties of a new cage compound 2, 4, 6, 8, 12‐pentanitro‐10‐(3, 5, 6‐trinitro (2‐pyridyl))‐2, 4, 6, 8, 12‐hexaazatetracyclo [5.5.0.03,11.05,9]dodecane (PNTNPHATCD) in both the gas and solid phases. The molecular orbital calculations using the density functional theory methods at the B3LYP/6‐31G(d,p) level indicate that both the heat of formation and strain energy of PNTNPHATCD are larger than those of 2, 4, 6, 8, 10, 12‐hexanitro‐2, 4, 6, 8, 10, 12‐hexaazatetracyclo [5.5.0.0.0] dodecane (CL‐20). The infrared spectra and the thermodynamic property in gas phase were predicted and discussed. The calculated detonation characteristics of PNTNPHATCD estimated using the Kamlet–Jacobs equation equally matched with those of CL‐20. Bond‐breaking results on the basis of natural bond orbital analysis imply that C–C bond in cage skeleton, C–N bond in pyridine, and N–NO2 bond in the side chain of cage may be the trigger bonds in the pyrolysis. The structural properties of PNTNPHATCD crystal have been studied by a plane‐wave density functional theory method in the framework of the generalized gradient approximation. The crystal packing predicted using the Condensed‐phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force fields belongs to the Pbca space group, with the lattice parameters a = 20.87 Å, b = 24.95 Å, c = 7.48 Å, and Z = 8, respectively. The results of the band gap and density of state suggest that the N–NO2 bond in PNTNPHATCD may be the initial breaking bond in the pyrolysis step. As the temperature increases, the heat capacity, enthalpy, and entropy of PNTNPHATCD crystal all increase, whereas the free energy decreases. Considering that the cage compound has the better detonation performances and stability, it may be a superior high energy density compound. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A systematic series of ortho‐methyl‐ and nitro‐substituted arylhydrazones 2–6 formed by Japp–Klingemann reaction between pentane‐2,4‐dione and the respective aryldiazonium salts have been synthesized and studied by X‐ray crystal structure analysis, with added quantum chemical calculations. The optimized molecular geometries based on DFT calculations, enabling determination of relevant rotational barriers, and the calculated bond and ring critical points, using the method of ‘atoms in molecules’, were found to correspond with the experimental data, involving specific molecular conformations and hydrogen‐bonded ring structure dependent on the ortho‐substitution, thus making possible reliable structural prediction of this compound class. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
1,1,1‐Trichloro‐3‐(1‐phenethylamino‐ethylidene)‐pentane‐2,4‐dione is spectroscopically and structurally elucidated by means of linear‐polarized IR spectroscopy (IR‐LD) of oriented solids as a colloidal suspension in nematic liquid crystal. Structural information and IR‐spectroscopic assignment are supported by quantum chemical calculations at MP2 and B3LYP level of theory and 6‐311++G** basis set. The geometry is characterized with an inramolecular hydrogen bond of NHO?C with length of 2.526 Å and a NHO angle of 140.5(1)°. The NH? C(CH3)C?C? C?O(CH3) fragment is nearly flat with a maximal deviation of total planarity of 10.4°. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A new merocyanine dye, 1,3‐Dimethyl‐5‐{(thien‐2‐yl)‐[4‐(1‐piperidyl)phenyl]methylidene}‐ (1H, 3H)‐pyrimidine‐2,4,6‐trione 3 , has been synthesized by condensation of 2‐[4‐(piperidyl)benzoyl]thiophene 1 with N,N′‐dimethyl barbituric acid 2 . The solvatochromic response of 3 dissolved in 26 solvents of different polarity has been measured. The solvent‐dependent long‐wavelength UV/Vis spectroscopic absorption maxima, vmax, are analyzed using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability), α (hydrogen‐bond donating capacity), and β (hydrogen‐bond accepting ability) in terms of the well‐established linear solvation energy relationship (LSER): (1) The solvent independent coefficients s , a , and b and (vmax)0 have been determined. The McRae equation and the empirical solvent polarity index, ET(30) have been also used to study the solvatochromism of 3 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Single crystals of 4-methylbenzylammonium sulfate were grown in an aqueous solution at room temperature. The grown compound is characterized by spectroscopic, thermal, and dielectric studies and its structure was determined by single-crystal X-ray diffraction analysis. Its crystal structure is described as a three-dimensional network where the sulfate anions (HSO4?) are interconnected through H-bonds to form anionic layers between which the 4-methylbenzylammonium cations are located. The hydrogen bonding network connecting the different components is given. Hirshfeld surface analysis was performed to visualize, explore and quantify intermolecular interactions in the crystal lattice. This analysis revealed the presence of H…C/H…C, C…O/O…C intermolecular interactions and O…O, H…H short contacts in the crystal. X-ray, structural and electrical results are correlated. The kind of the observed conduction is protonic by translocation. Differential scanning calorimetry (DSC) shows that this material presents a reversible phase transition at 390 K, confirmed by the dielectric permittivity study.  相似文献   

6.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐fluoro‐N‐(2‐hydroxy‐4‐nitrophenyl)benzamide were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red‐shift of the NH‐stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO‐stretching mode gives the charge transfer interaction through a π‐conjugated path. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
We have studied 2‐(2‐benzofuranyl)‐2‐imidazoline (BFI) and characterized it by using infrared and Raman spectroscopies. The density functional theory (DFT) method together with Pople's basis set shows that two conformers exist for the title molecule as have been theoretically determined in the gas phase and that, probably, an average of both conformations is present in the solid phase. The harmonic vibrational wavenumbers for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐31G* level in the proximity of the isolated molecule. For a complete assignment of the IR and Raman spectra in the compound in the solid phase, DFT calculations were combined with Pulay's scaled quantum mechanics force field (SQMFF) methodology in order to fit the theoretical wavenumbers to the experimental ones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
3‐Methyl‐2(1H)‐quinoxalinone and three derivatives (3,7‐dimethyl‐2(1H)‐quinoxalinone, 3‐methyl‐6,7‐dichloro‐2(1H)‐quinoxalinone and 3‐methyl‐7‐nitro‐2(1H)‐quinoxalinone) have been synthesised and analysed by 1H NMR and IR spectral spectroscopies. The crystal structures have been determined at room temperature from X‐ray single crystal diffraction data for three of them and from powder diffraction data for the nitro derivative. 3‐Methyl‐2(1H)‐quinoxalinone crystallises in the P21/c monoclinic system, 3,7‐dimethyl‐2(1H)‐quinoxalinone in the Pbca orthorhombic system and the two others compounds in the P$\overline {1} $ triclinic system. For the nitro derivative, C? H$\cdots $ N short contacts are established between the carbon of the methyl and the double bounded nitrogen of the ring. For the three other compounds N? H$\cdots $ O hydrogen bonds involve the atoms of the heterocyclic ring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The N‐(2′‐furyl)‐imidazole ( 1 ) has been prepared and characterized using infrared, Raman and multidimensional nuclear magnetic resonance spectroscopies. Theoretical calculations have been carried out by employing the Density Functional Theory (DFT) method, in order to optimize the geometry of their two conformers in the gas phase and to support the assignments of the vibrational bands of 1 to their normal modes. For a complete assignment of the compound, DFT calculations were combined with Scaled Quamtum Mecanic Force Field (SQMFF) methodology in order to fit the theoretical wavenumber values to the experimental one. Furthermore, Natural Bond Orbital (NBO) and topological properties by Atoms In Molecules (AIM) calculations were performed to analyze the nature and magnitude of the intramolecular interactions. The result reveals that two conformers are expected in liquid phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The result of the X‐ray diffraction, differential scanning calorimetry and dielectric studies on a new crystal material C6H18N2SbCl5 is presented. The new organic–inorganic compound has been synthesized and characterized by the X‐ray diffraction method at 296(2) K. It crystallizes in the monoclinic P21/n space group. The cell dimensions are: a = 5.8617(1) Å, b = 15.7069(2) Å, c = 16.6693(2) Å, β = 97.627(1)° and Z = 4. The crystal structure consists of a discrete ionic layer of (C6H18N2)2+ cations and [SbCl5]2? anions linked via simple and bifurcated N―H · · · Cl hydrogen bonds. DSC analysis shows that this compound undergoes a phase transition at about (384 ± 2) K. AC and DC conductivities, complex dielectric permittivity ε*(ω) and complex electrical modulus M*(ω) were respectively studied as temperature and frequency functions. The combined data support each other and confirm the existence of a structural phase transition at about 384 K. Moreover, the temperature dependence of the DC conductivity and relaxation frequency followed the Arrhenius relation. The frequency dependence of the real part of the AC conductivity in both phases follows the Jonscher's universal dynamic law: . The behavior of s(T) with temperature suggests that the hopping over barrier model (CBH) and the small polaron tunneling mechanism (SPTM) prevail in phases I and II, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A new inorganic-organic hybrid material produced from 2,6-dimethylanilinium cations and tin halide (SnCl6)2? has been synthesized and structurally determined by X-ray diffraction method. The title compound crystallizes in the monoclinic system, space group C2/m with a = 19.8772(4), b = 6.9879(1), c = 8.3001(2) Å, β = 98.487(2)° and V = 1140.26(4) Å3. The crystal structure is built up of sheets of (SnCl6)2? octahedral anions and 2,6-xylidinium cations. The optical band gap was calculated and found to be 4.11 eV. At high temperature this compound exhibits a structural phase transition at 338 K. This has been characterized by differential scanning calorimetric and dielectric studies. Measurements of AC conductivity as a function of frequency at different temperatures indicated the hopping conduction mechanism. The bioassay results showed that the structure exhibits significant antibacterial activity.  相似文献   

12.
In this study 2‐(2′‐furyl)‐4,5‐1H‐dihydroimidazole (1) was prepared and then characterized by infrared, Raman, and multidimensional nuclear magnetic resonance (NMR) spectroscopies. The crystal and molecular structures of 1 were determined by X‐ray diffraction methods. The density functional theory (DFT) and second‐order Møller–Plesset theory (MP2) with Pople's basis set show that there are two conformers for the title molecule that have been theoretically determined in the gas phase, and that only one of them, conformer I, is present in the solid phase. NMR spectra observed for 1 were successfully compared with the calculated chemical shifts at the B3LYP/6‐311++G** level theorized for this conformer. The harmonic vibrational frequencies for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐311++G** level in the approximation of the isolated molecule. For a complete assignment of the IR and Raman spectra in the solid phase of 1 , DFT calculations were combined with Pulay´s scaled quantum mechanics force field (SQMFF) methodology to fit the theoretical frequency values to the experimental ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The new compound 1-(2-methoxyphenyl)piperazinium chloranilate (MPP.CA) was synthesized and studied by the single crystal X-ray diffraction method. Its structure was confirmed by infrared spectroscopy. The crystal structure consists of ribbons of chloranilate anions and 1-(2-methoxyphenyl)piperazinium cations linked together by NH…O hydrogen bonds. Two protons are transferred from a chloranilic acid molecule to the nitrogen of the piperazine in this structure. Measurements of AC conductivity as a function of frequency at different temperatures indicated the hopping conduction mechanism; in addition, the variation of dielectric constant as a function of T confirmed the transition phase indicated by the differential scanning calorimetry (DSC). The physico-chemical properties, UV-Vis, DSC and dielectric properties are described. Hirshfeld surface analyzes all the intermolecular interactions involved within the structure, which are important to stabilize the structure.  相似文献   

14.
We have isolated two isomeric solids 1 and 2 of N,N′‐bis(3,5‐dichlorosalicylidene)‐2,2′‐ethylenedianiline and characterized by IR, UV/Vis, X‐ray powder diffraction, thermogravimetric analysis/differential thermal analysis, and X‐ray crystallography. Although the solids are same formulas, each shows different colors and crystal structures. Orange solid ( 1 ) shows endo conformation while yellow solid ( 2 ) exhibits exo form depending on packing modes. UV/Vis spectra of 1 and 2 appear very similar patterns in the solid state; however, the bands of 1 are slightly red‐shifted compared with those of 2 . 1 displays a strong fluorescent emission band at ~582 nm while 2 shows an intense fluorescent signal at ~563 nm. The charge density populations of 1 and 2 have been studied by computational simulations using density functional theory at pbe1pbe/6‐311G** level. The calculated highest occupied molecular orbital and lowest unoccupied molecular orbital energies of 1 and 2 confirm that charge transfer occurs within the organic molecules. The energy difference of HOMO‐LUMO in 1 is smaller slightly than that of 2 about 0.05 eV (~17 nm). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
合成了一个三维超分子化合物(C20O2H14)(C12N2H8)(命名为BP1),通过元素分析、红外光谱、核磁共振氢谱和X射线单晶衍射对其结构进行了表征,结果表明分子之间通过氢键和π-π堆积弱的相互作用形成超分子化合物。对所有合成的超分子化合物进行了紫外光谱和荧光光谱的测试。在室温DMSO溶液中,当激发波长为342nm时,化合物在373nm处有一强发射峰,呈现紫色荧光,这可以归属于分子内的π*→π跃迁。X射线单晶衍射分析结果表明,该超分子化合物属于三斜晶系,P1空间群,晶胞参数a=1.0878(2)nm,b=1.1252(2)nm,c=1.1680(2)nm,α=97.89(3)°,β=110.91(3)°,γ=109.62(3)°,V=1.2032(4)nm3,Z=2,R1=0.0531,wR2=0.1634,GOF值为1.034。  相似文献   

16.
In the present work, we theoretical study the sensing mechanism of a new fluoride chemosensor (E)‐2‐(2‐(dimethylamino)ethyl)‐6‐(4‐hydroxystyryl)‐1H‐benzo[de]‐isoquinoline‐1,3(2H)‐dione (the abbreviation is NIM ). Based on density functional theory and time‐dependent density functional theory methods, the fluoride anion response mechanism has been confirmed via constructing potential energy curve. The exothermal deprotonation process along with the intermolecular hydrogen bond O–H···F reveals the uniqueness of detecting F?. After capturing hydrogen proton forming NIM‐A anion configuration, a new absorption peak around 655 nm appears in dimethyl sulfoxide solvent. In addition, the emission of NIM can be quenched when adding F? has been also confirmed. Due to the twisted intramolecular charge transfer character NIM‐A‐S 1 form, we further verify the experimental phenomenon. The theoretical electronic spectra (vertical excitation energies and fluorescence peak) reproduced previous experimental results (ACS Appl. Mater. Interfaces 2014, 6, 7996), which not only reveals the rationality of our theoretical level used in this work but also confirms the correctness of geometrical attribution. In view of the excitation process, the strong intramolecular charge transfer process of S0 → S1 transition explain the redshift of absorption peak for NIM with the addition of fluoride anion. This work presents a straightforward sensing mechanism (deprotonation process) of fluoride anion for the novel NIM chemosensor.  相似文献   

17.
3‐Hydroxy‐5‐(pyrimidin‐2‐yl)‐2H‐pyrrol‐2‐one (HYPO, T1) and 2‐hydroxy‐5‐(pyrimidine‐2‐yl)‐3H‐pyrrole‐3‐one (HYPO, T2) have designed in this research to study potential energy curves for their dynamic motions and possibility of crossing between levels. Study of tautomerism shows that T1 tautomer is more stable than T2 (about 5.83 kJ/mol). Dynamic study of possible motions show rate constants (highest possible) equal to 8.82 M/s for tautomerism, 1.70 × 109 M/s for relative rotation of ring (rr) and 3.67 × 106 M/s for rotation of OH bond (br). Moreover, variations of orbital populations, NBO charges, hybridations, and acceptor–donor interactions in IRC steps have been investigated to study the possibility of non‐adiabatic crossing between tautomerism and ring rotation potential energy curves. The data showed that in spite of the fact that these two potentials share three common points, these two potential curves cannot have non‐adiabatic crossing because of different symmetries and a large difference between their barrier energies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Variable temperature 1H NMR spectroscopic studies of 2, 6‐di(o‐anisyl) anisole show syn and anti atropisomers at low temperature. The barrier for interconverting these isomers by rotation about the aryl‐aryl bond, found by fitting the experimental data, is 41.2 kJ/mol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We have synthesized 4‐[N‐phenyl‐N‐(3‐methylphenyl)‐amino]‐benzoic acid (4‐[PBA]) and investigated its molecular vibrations by infrared and Raman spectroscopies as well as by calculations based on the density functional theory (DFT) approach. The Fourier transform (FT) Raman, dispersive Raman and FT‐IR spectra of 4‐[PBA] were recorded in the solid phase. We analyzed the optimized geometric structure and energies of 4‐[PBA] in the ground state. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital analysis. The results show that change in electron density in the σ* and π* antibonding orbitals and E2 energies confirm the occurrence of intramolecular charge transfer within the molecule. Theoretical calculations were performed at the DFT level using the Gaussian 09 program. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compound, which show agreement with the observed spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Reaction of 3‐methyl‐2(1H)‐quinoxalinone ( 4) and 2(1H)‐quinoxalinone ( 5) with 5,6‐anhydro‐1,2‐O‐isopropylidene‐ α‐D ‐glucofuranose 6 gives the unexpected O‐glucoquinoxalines derivatives by the intermediary novel intramolecular rearrangement of 5,6‐anhydro‐1,2‐O‐isopropylidene‐α‐D ‐glucofuranose to the corresponding 3,6‐anhydro form. The obtained O‐glucoquinoxalines 7,8 were identified by NMR spectroscopy. The X‐ray crystal structures have been determined at room temperature. Moreover, a solid–solid phase transition has been detected at 198.9 K for O‐glucoquinoxalines 7 and the structure of the low‐temperature phase has been solved at 188 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号