首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Quantum transport properties of two-dimensional electron gas (2DEG) in undoped MgZnO/ZnO heterostructures with polarization charge effect have been investigated theoretically. Polarization roughness scattering (PRS) combining polarization charge and interface roughness scattering was proposed as a new scattering mechanism. It was found that the carriers confined in the heterostructures (HSs) would be scattered from polarization charges when they were moving along the in-plane and PRS played a very important role for the low-temperature electron mobility when the electron density Ns exceeded 1.0e11 cm−2, especially in a higher electron density region. With PRS, the experimental data on the density dependence of 2DEG mobility in the MgZnO/ZnO HSs under study can be well reproduced. The study indicates that the improved processing techniques providing a smooth interface and a good separation between the 2DEG electrons and the polarization charges should be significant for the quantum device’s performance.  相似文献   

2.
3.
Cobalt (Co) addition and thermal annealing induced structural and vibrational properties of ZnO nanostructures were analysed. X‐ray diffraction pattern reveals that the nanostructures are in hexagonal wurtzite type and the formation of Co3O4. The Co ion induced morphology changes have been studied by high‐resolution scanning electron microscope images and energy dispersive spectroscopy measurements confirm the presence of Co ions. CoO‐related magnon excitation bands are emerged at room temperature for the Co‐added samples. There are no changes in the band positions of the Raman spectra of pure and Co‐added materials. Annealed sample exhibits the suppression of magnon bands and formation of Co3O4: ZnO composites. Raman line width and the electron phonon coupling constant are decreased with respect to the annealing temperature. The formation of Co3O4 : ZnO composite phases have further confirmed by infrared spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
We report the appearance and enhancement in intensity of impurity related local vibrational modes in Bi2O3 : Ho micro‐rods along with normal modes. Pure and Ho‐doped Bi2O3 micro‐rods were synthesized by conventional co‐precipitation method at 60 °C. The structural and morphological studies were carried out using powder X‐ray diffraction technique and scanning electron microscopy, respectively. Raman spectroscopic studies reveal the existence of local phonon vibrational modes (LVM) due to the incorporation of Ho3+. Harmonic approximation method was employed to find the dopant‐related peak in the Raman spectra. Variation in full width at half maximum for LVM with increase in Ho3+ was also investigated. This increase in FWHM indicates the decrease in crystallinity of the doped samples. The phonon lifetime calculation carried out for each samples and the decrease in phonon lifetime with doping concentration make this material a potential candidate for optical and electronic applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Hot electron cooling rate P, due to acoustic phonons, is investigated in three‐dimensional Dirac fermion systems at low temperature taking account of the screening of electron–acoustic phonon interaction. P is studied as a function of electron temperature Te and electron concentration ne. Screening is found to suppress P very significantly for about Te < 0.5 K and its effect reduces considerably for about Te > 1 K in Cd3As2. In Bloch–Grüneisen (BG) regime, for screened (unscreened) case the Te dependence is PTe9(Te5) and the ne dependence gives Pne–5/3 (ne–1/3). The Te dependence is characteristic of 3D phonons and ne dependence is characteristics of 3D Dirac fermions. The plot of P /Te4 vs. Te shows a maximum at temperature Tem which shifts to higher values for larger ne. Interestingly, the maximum is nearly same for different ne and Tem/ne1/3 being nearly constant. More importantly, we propose, the ne dependent measurements of P would provide a clearer signature to identify 3D Dirac semimetal phase. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
A nanosecond‐pulsed current–voltage technique was applied to study hot‐electron transport along the two‐dimensional electron gas channel confined at a nominally undoped AlInN/AlN/GaN heterointerface. Hot‐electron drift velocity was deduced under the assumptions of uniform longitudinal electric field and field‐independent electron sheet density. At a fixed electric field strength, a resonance‐type non‐monotonous dependence of the velocity on the electron density was found in the investigated range from 1 to When the electric field increased from 20 kV/cm to 80 kV/cm, the peak velocity increased from ~1.1 to cm/s, and the position of the resonance shifted from ~1.1 to ~1.2 respectively. The resonance position correlates with that for the fastest decay of hot phonons known from independent experiment. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The optimized geometry and structural features of the most prospective electro‐optic crystal 4‐(N,N‐dimethylamino)‐N‐methyl‐4′‐toluene sulfonate (DAST), and the vibrational spectral investigations have been comprehensively described with the near infrared Fourier transform (NIR FT) Raman and Fourier transform infrared (FT‐IR) spectra supported by the density functional theoretical (DFT) computations to elucidate the contribution of vibrational modes to the linear electro‐optic (LEO) effect. Mulliken population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer (ICT), intramolecular hydrogen bonding and hyperconjugative interactions on the geometries. The influence of CT interaction between the phenyl ring and the dimethylamino group of the nonlinear optical (NLO) chromophore on the endocyclic and exocyclic angles, and the electronic effects such as hyperconjugation and back‐donation on the methyl hydrogen atoms have been examined. The concurrent intense activation of Raman and IR activities of the effective conjugation vibrational coordinate, which significantly contributes to the LEO effect resulting from the strong electron–phonon (e/ph) coupling, has been analyzed in detail. The effects of frontier orbitals, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), transition of electron density (ED) transfer and the influence of planarity in the stilbazolium ring on the first hyperpolarizability are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号